
Dive Into Python

Python from novice to pro

Mark Pilgrim

i

Copyright C© 2000, 2001, 2002, 2003, 2004 Mark Pilgrim

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in Appendix G.

The example programs in this book are free software; you can redistribute and/or modify them under the terms
of the Python license as published by the Python Software Foundation. A copy of the license is included in
Appendix H.

mailto:mark@diveintopython.org
mailto:mark@diveintopython.org

ii

Contents

1 Installing Python 1
1.1 Which Python is right for you? . 1
1.2 Python on Windows . 1
1.3 Python on Mac OS X . 3
1.4 Python on Mac OS 9 . 5
1.5 Python on RedHat Linux . 5
1.6 Python on Debian GNU/Linux . 6
1.7 Python Installation from Source . 7
1.8 The Interactive Shell . 8
1.9 Summary . 9

2 Your First Python Program 10
2.1 Diving in . 10
2.2 Declaring Functions . 11

2.2.1 How Python’s Datatypes Compare to Other Programming
Languages . 12

2.3 Documenting Functions . 12
2.4 Everything Is an Object . 13

2.4.1 The Import Search Path . 14
2.4.2 What’s an Object? . 15

2.5 Indenting Code . 15
2.6 Testing Modules . 17

3 Native Datatypes 19
3.1 Introducing Dictionaries . 19

3.1.1 Defining Dictionaries . 19
3.1.2 Modifying Dictionaries . 20
3.1.3 Deleting Items From Dictionaries . 21

3.2 Introducing Lists . 22
3.2.1 Defining Lists . 23
3.2.2 Adding Elements to Lists . 24
3.2.3 Searching Lists . 26
3.2.4 Deleting List Elements . 27
3.2.5 Using List Operators . 28

3.3 Introducing Tuples . 29
3.4 Declaring variables . 31

3.4.1 Referencing Variables . 31
3.4.2 Assigning Multiple Values at Once . 32

iii

3.5 Formatting Strings . 33
3.6 Mapping Lists . 35
3.7 Joining Lists and Splitting Strings . 37

3.7.1 Historical Note on String Methods . 39
3.8 Summary . 39

4 The Power Of Introspection 41
4.1 Diving In . 41
4.2 Using Optional and Named Arguments . 43
4.3 Using type, str, dir, and Other Built-In Functions . 44

4.3.1 The type Function . 44
4.3.2 The str Function . 45
4.3.3 Built-In Functions . 47

4.4 Getting Object References With getattr . 48
4.4.1 getattr with Modules . 49
4.4.2 getattr As a Dispatcher . 49

4.5 Filtering Lists . 51
4.6 The Peculiar Nature of and and or . 52

4.6.1 Using the and-or Trick . 54
4.7 Using lambda Functions . 55

4.7.1 Real-World lambda Functions . 56
4.8 Putting It All Together . 57
4.9 Summary . 60

5 Objects and Object-Orientation 62
5.1 Diving In . 62
5.2 Importing Modules Using from module import . 65
5.3 Defining Classes . 66

5.3.1 Initializing and Coding Classes . 68
5.3.2 Knowing When to Use self and __init__ . 69

5.4 Instantiating Classes . 70
5.4.1 Garbage Collection . 71

5.5 Exploring UserDict: A Wrapper Class . 72
5.6 Special Class Methods . 76

5.6.1 Getting and Setting Items . 76
5.7 Advanced Special Class Methods . 79
5.8 Introducing Class Attributes . 81
5.9 Private Functions . 83
5.10 Summary . 84

6 Exceptions and File Handling 86

iv

6.1 Handling Exceptions . 86
6.1.1 Using Exceptions For Other Purposes . 88

6.2 Working with File Objects . 89
6.2.1 Reading Files . 90
6.2.2 Closing Files . 91
6.2.3 Handling I/O Errors . 92
6.2.4 Writing to Files . 93

6.3 Iterating with for Loops . 95
6.4 Using sys.modules . 98
6.5 Working with Directories . 100
6.6 Putting It All Together . 104
6.7 Summary . 106

7 Regular Expressions 109
7.1 Diving In . 109
7.2 Case Study: Street Addresses . 109
7.3 Case Study: Roman Numerals . 112

7.3.1 Checking for Thousands . 113
7.3.2 Checking for Hundreds . 114

7.4 Using the {n,m} Syntax . 116
7.4.1 Checking for Tens and Ones . 118

7.5 Verbose Regular Expressions . 120
7.6 Case study: Parsing Phone Numbers . 121
7.7 Summary . 127

8 HTML Processing 129
8.1 Diving in . 129
8.2 Introducing sgmllib.py . 134
8.3 Extracting data from HTML documents . 137
8.4 Introducing BaseHTMLProcessor.py . 140
8.5 locals and globals . 143
8.6 Dictionary-based string formatting . 147
8.7 Quoting attribute values . 149
8.8 Introducing dialect.py . 150
8.9 Putting it all together . 154
8.10 Summary . 156

9 XML Processing 157
9.1 Diving in . 157
9.2 Packages . 165
9.3 Parsing XML . 167

v

9.4 Unicode . 171
9.5 Searching for elements . 176
9.6 Accessing element attributes . 178
9.7 Segue . 180

10 Scripts and Streams 181
10.1 Abstracting input sources . 181
10.2 Standard input, output, and error . 186
10.3 Caching node lookups . 191
10.4 Finding direct children of a node . 192
10.5 Creating separate handlers by node type . 193
10.6 Handling command-line arguments . 195
10.7 Putting it all together . 200
10.8 Summary . 202

11 HTTP Web Services 203
11.1 Diving in . 203
11.2 How not to fetch data over HTTP . 206
11.3 Features of HTTP . 207

11.3.1 User-Agent . 207
11.3.2 Redirects . 207
11.3.3 Last-Modified/If-Modified-Since . 208
11.3.4 ETag/If-None-Match . 208
11.3.5 Compression . 209

11.4 Debugging HTTP web services . 209
11.5 Setting the User-Agent . 211
11.6 Handling Last-Modified and ETag . 213
11.7 Handling redirects . 217
11.8 Handling compressed data . 222
11.9 Putting it all together . 225
11.10 Summary . 228

12 SOAP Web Services 229
12.1 Diving In . 229
12.2 Installing the SOAP Libraries . 231

12.2.1 Installing PyXML . 231
12.2.2 Installing fpconst . 232
12.2.3 Installing SOAPpy . 233

12.3 First Steps with SOAP . 233
12.4 Debugging SOAP Web Services . 234
12.5 Introducing WSDL . 237

vi

12.6 Introspecting SOAP Web Services with WSDL . 238
12.7 Searching Google . 241
12.8 Troubleshooting SOAP Web Services . 244
12.9 Summary . 249

13 Unit Testing 250
13.1 Introduction to Roman numerals . 250
13.2 Diving in . 251
13.3 Introducing romantest.py . 252
13.4 Testing for success . 255
13.5 Testing for failure . 258
13.6 Testing for sanity . 260

14 Test-First Programming 264
14.1 roman.py, stage 1 . 264
14.2 roman.py, stage 2 . 268
14.3 roman.py, stage 3 . 272
14.4 roman.py, stage 4 . 276
14.5 roman.py, stage 5 . 279

15 Refactoring 283
15.1 Handling bugs . 283
15.2 Handling changing requirements . 285
15.3 Refactoring . 293
15.4 Postscript . 298
15.5 Summary . 300

16 Functional Programming 302
16.1 Diving in . 302
16.2 Finding the path . 304
16.3 Filtering lists revisited . 307
16.4 Mapping lists revisited . 309
16.5 Data-centric programming . 310
16.6 Dynamically importing modules . 312
16.7 Putting it all together . 314
16.8 Summary . 317

17 Dynamic functions 318
17.1 Diving in . 318
17.2 plural.py, stage 1 . 319
17.3 plural.py, stage 2 . 321
17.4 plural.py, stage 3 . 323

vii

17.5 plural.py, stage 4 . 325
17.6 plural.py, stage 5 . 328
17.7 plural.py, stage 6 . 330
17.8 Summary . 333

18 Performance Tuning 334
18.1 Diving in . 334
18.2 Using the timeit Module . 337
18.3 Optimizing Regular Expressions . 339
18.4 Optimizing Dictionary Lookups . 342
18.5 Optimizing List Operations . 346
18.6 Optimizing String Manipulation . 348
18.7 Summary . 350

A Further reading 352

B A 5-minute review 353

C Tips and tricks 354

D List of examples 355

E Revision history 356

F About the book 357

G GNU Free Documentation License 358
G.1 Preamble . 358
G.2 Applicability and definitions . 358
G.3 Verbatim copying . 359
G.4 Copying in quantity . 360
G.5 Modifications . 360
G.6 Combining documents . 362
G.7 Collections of documents . 363
G.8 Aggregation with independent works . 363
G.9 Translation . 363
G.10 Termination . 364
G.11 Future revisions of this license . 364
G.12 How to use this License for your documents . 364

H Python license 365
H.1 History of the software . 365
H.2 Terms and conditions for accessing or otherwise using Python 365

viii

H.2.1 PSF license agreement . 365
H.2.2 BeOpen Python open source license agreement version 1 366
H.2.3 CNRI open source GPL-compatible license agreement 367
H.2.4 CWI permissions statement and disclaimer . 369

ix

List of Examples

1.1 Two versions of Python . 4
1.2 Installing on RedHat Linux 9 . 6
1.3 Installing on Debian GNU/Linux . 6
1.4 Installing from source . 7
1.5 First Steps in the Interactive Shell . 8
2.1 odbchelper.py . 10
2.2 Defining the buildConnectionString Function’s doc string 12
2.3 Accessing the buildConnectionString Function’s doc string 13
2.4 Import Search Path . 14
2.5 Indenting the buildConnectionString Function . 16
2.6 if Statements . 16
3.1 Defining a Dictionary . 19
3.2 Modifying a Dictionary . 20
3.3 Dictionary Keys Are Case-Sensitive . 21
3.4 Mixing Datatypes in a Dictionary . 21
3.5 Deleting Items from a Dictionary . 21
3.6 Defining a List . 23
3.7 Negative List Indices . 23
3.8 Slicing a List . 23
3.9 Slicing Shorthand . 24
3.10 Adding Elements to a List . 24
3.11 The Difference between extend and append . 25
3.12 Searching a List . 26
3.13 Removing Elements from a List . 27
3.14 List Operators . 28
3.15 Defining a tuple . 29
3.16 Tuples Have No Methods . 29
3.17 Defining the myParams Variable . 31
3.18 Referencing an Unbound Variable . 31
3.19 Assigning multiple values at once . 32
3.20 Assigning Consecutive Values . 32
3.21 Introducing String Formatting . 33
3.22 String Formatting vs. Concatenating . 34
3.23 Formatting Numbers . 34
3.24 Introducing List Comprehensions . 35
3.25 The keys, values, and items Functions . 36
3.26 List Comprehensions in buildConnectionString, Step by Step 36
3.27 Output of odbchelper.py . 38

x

3.28 Splitting a String . 38
4.1 apihelper.py . 41
4.2 Sample Usage of apihelper.py . 42
4.3 Advanced Usage of apihelper.py . 42
4.4 Valid Calls of info . 43
4.5 Introducing type . 44
4.6 Introducing str . 45
4.7 Introducing dir . 45
4.8 Introducing callable . 46
4.9 Built-in Attributes and Functions . 47
4.10 Introducing getattr . 48
4.11 The getattr Function in apihelper.py . 49
4.12 Creating a Dispatcher with getattr . 50
4.13 getattr Default Values . 50
4.14 Introducing List Filtering . 51
4.15 Introducing and . 52
4.16 Introducing or . 53
4.17 Introducing the and-or Trick . 54
4.18 When the and-or Trick Fails . 54
4.19 Using the and-or Trick Safely . 55
4.20 Introducing lambda Functions . 55
4.21 split With No Arguments . 56
4.22 Getting a doc string Dynamically . 58
4.23 Why Use str on a doc string? . 59
4.24 Introducing ljust . 59
4.25 Printing a List . 60
5.1 fileinfo.py . 62
5.2 import module vs. from module import . 65
5.3 The Simplest Python Class . 67
5.4 Defining the FileInfo Class . 67
5.5 Initializing the FileInfo Class . 68
5.6 Coding the FileInfo Class . 69
5.7 Creating a FileInfo Instance . 70
5.8 Trying to Implement a Memory Leak . 71
5.9 Defining the UserDict Class . 72
5.10 UserDict Normal Methods . 74
5.11 Inheriting Directly from Built-In Datatype dict . 75
5.12 The __getitem__ Special Method . 76
5.13 The __setitem__ Special Method . 77
5.14 Overriding __setitem__ in MP3FileInfo . 77
5.15 Setting an MP3FileInfo’s name . 78

xi

5.16 More Special Methods in UserDict . 79
5.17 Introducing Class Attributes . 81
5.18 Modifying Class Attributes . 82
5.19 Trying to Call a Private Method . 84
6.1 Opening a Non-Existent File . 87
6.2 Supporting Platform-Specific Functionality . 88
6.3 Opening a File . 90
6.4 Reading a File . 90
6.5 Closing a File . 91
6.6 File Objects in MP3FileInfo . 92
6.7 Writing to Files . 93
6.8 Introducing the for Loop . 95
6.9 Simple Counters . 95
6.10 Iterating Through a Dictionary . 96
6.11 for Loop in MP3FileInfo . 97
6.12 Introducing sys.modules . 98
6.13 Using sys.modules . 98
6.14 The __module__ Class Attribute . 99
6.15 sys.modules in fileinfo.py . 99
6.16 Constructing Pathnames . 100
6.17 Splitting Pathnames . 101
6.18 Listing Directories . 102
6.19 Listing Directories in fileinfo.py . 102
6.20 Listing Directories with glob . 103
6.21 listDirectory . 104
7.1 Matching at the End of a String . 109
7.2 Matching Whole Words . 111
7.3 Checking for Thousands . 113
7.4 Checking for Hundreds . 115
7.5 The Old Way: Every Character Optional . 116
7.6 The New Way: From n o m . 117
7.7 Checking for Tens . 118
7.8 Validating Roman Numerals with {n,m} . 119
7.9 Regular Expressions with Inline Comments . 120
7.10 Finding Numbers . 122
7.11 Finding the Extension . 123
7.12 Handling Different Separators . 123
7.13 Handling Numbers Without Separators . 124
7.14 Handling Leading Characters . 125
7.15 Phone Number, Wherever I May Find Ye . 126
7.16 Parsing Phone Numbers (Final Version) . 126

xii

8.1 BaseHTMLProcessor.py . 129
8.2 dialect.py . 131
8.3 Output of dialect.py . 134
8.4 Sample test of sgmllib.py . 136
8.5 Introducing urllib . 137
8.6 Introducing urllister.py . 138
8.7 Using urllister.py . 139
8.8 Introducing BaseHTMLProcessor . 140
8.9 BaseHTMLProcessor output . 142
8.10 Introducing locals . 144
8.11 Introducing globals . 145
8.12 locals is read-only, globals is not . 146
8.13 Introducing dictionary-based string formatting . 147
8.14 Dictionary-based string formatting in BaseHTMLProcessor.py 148
8.15 More dictionary-based string formatting . 148
8.16 Quoting attribute values . 149
8.17 Handling specific tags . 151
8.18 SGMLParser . 151
8.19 Overriding the handle_data method . 153
8.20 The translate function, part 1 . 154
8.21 The translate function, part 2: curiouser and curiouser . 154
8.22 The translate function, part 3 . 155
9.1 kgp.py . 157
9.2 toolbox.py . 162
9.3 Sample output of kgp.py . 163
9.4 Simpler output from kgp.py . 164
9.5 Loading an XML document (a sneak peek) . 165
9.6 File layout of a package . 165
9.7 Packages are modules, too . 166
9.8 Loading an XML document (for real this time) . 167
9.9 Getting child nodes . 168
9.10 toxml works on any node . 169
9.11 Child nodes can be text . 169
9.12 Drilling down all the way to text . 170
9.13 Introducing unicode . 172
9.14 Storing non-ASCII characters . 172
9.15 sitecustomize.py . 173
9.16 Effects of setting the default encoding . 173
9.17 Specifying encoding in .py files . 174
9.18 russiansample.xml . 174
9.19 Parsing russiansample.xml . 174

xiii

9.20 binary.xml . 176
9.21 Introducing getElementsByTagName . 176
9.22 Every element is searchable . 177
9.23 Searching is actually recursive . 177
9.24 Accessing element attributes . 178
9.25 Accessing individual attributes . 179
10.1 Parsing XML from a file . 181
10.2 Parsing XML from a URL . 182
10.3 Parsing XML from a string (the easy but inflexible way) . 183
10.4 Introducing StringIO . 183
10.5 Parsing XML from a string (the file-like object way) . 184
10.6 openAnything . 185
10.7 Using openAnything in kgp.py . 186
10.8 Introducing stdout and stderr . 186
10.9 Redirecting output . 187
10.10 Redirecting error information . 188
10.11 Printing to stderr . 189
10.12 Chaining commands . 189
10.13 Reading from standard input in kgp.py . 190
10.14 loadGrammar . 191
10.15 Using the ref element cache . 192
10.16 Finding direct child elements . 192
10.17 Class names of parsed XML objects . 193
10.18 parse, a generic XML node dispatcher . 194
10.19 Functions called by the parse dispatcher . 194
10.20 Introducing sys.argv . 195
10.21 The contents of sys.argv . 196
10.22 Introducing getopt . 196
10.23 Handling command-line arguments in kgp.py . 198
11.1 openanything.py . 204
11.2 Downloading a feed the quick-and-dirty way . 206
11.3 Debugging HTTP . 209
11.4 Introducing urllib2 . 211
11.5 Adding headers with the Request . 212
11.6 Testing Last-Modified . 213
11.7 Defining URL handlers . 214
11.8 Using custom URL handlers . 215
11.9 Supporting ETag/If-None-Match . 216
11.10 Accessing web services without a redirect handler . 217
11.11 Defining the redirect handler . 218
11.12 Using the redirect handler to detect permanent redirects . 219

xiv

11.13 Using the redirect handler to detect temporary redirects . 220
11.14 Telling the server you would like compressed data . 222
11.15 Decompressing the data . 223
11.16 Decompressing the data directly from the server . 224
11.17 The openanything function . 225
11.18 The fetch function . 226
11.19 Using openanything.py . 227
12.1 search.py . 229
12.2 Sample Usage of search.py . 230
12.3 Verifying PyXML Installation . 232
12.4 Verifying fpconst Installation . 232
12.5 Verifying SOAPpy Installation . 233
12.6 Getting the Current Temperature . 234
12.7 Debugging SOAP Web Services . 235
12.8 Discovering The Available Methods . 238
12.9 Discovering A Method’s Arguments . 239
12.10 Discovering A Method’s Return Values . 239
12.11 Calling A Web Service Through A WSDL Proxy . 240
12.12 Introspecting Google Web Services . 241
12.13 Searching Google . 243
12.14 Accessing Secondary Information From Google . 244
12.15 Calling a Method With an Incorrectly Configured Proxy . 245
12.16 Calling a Method With the Wrong Arguments . 245
12.17 Calling a Method and Expecting the Wrong Number of Return Values 246
12.18 Calling a Method With An Application-Specific Error . 247
13.1 romantest.py . 252
13.2 testToRomanKnownValues . 256
13.3 Testing bad input to toRoman . 258
13.4 Testing bad input to fromRoman . 260
13.5 Testing toRoman against fromRoman . 261
13.6 Testing for case . 261
14.1 roman1.py . 264
14.2 Output of romantest1.py against roman1.py . 265
14.3 roman2.py . 268
14.4 How toRoman works . 269
14.5 Output of romantest2.py against roman2.py . 270
14.6 roman3.py . 273
14.7 Watching toRoman handle bad input . 274
14.8 Output of romantest3.py against roman3.py . 274
14.9 roman4.py . 276
14.10 How fromRoman works . 277

xv

14.11 Output of romantest4.py against roman4.py . 278
14.12 roman5.py . 280
14.13 Output of romantest5.py against roman5.py . 281
15.1 The bug . 283
15.2 Testing for the bug (romantest61.py) . 283
15.3 Output of romantest61.py against roman61.py . 283
15.4 Fixing the bug (roman62.py) . 284
15.5 Output of romantest62.py against roman62.py . 285
15.6 Modifying test cases for new requirements (romantest71.py) 286
15.7 Output of romantest71.py against roman71.py . 289
15.8 Coding the new requirements (roman72.py) . 291
15.9 Output of romantest72.py against roman72.py . 293
15.10 Compiling regular expressions . 294
15.11 Compiled regular expressions in roman81.py . 294
15.12 Output of romantest81.py against roman81.py . 295
15.13 roman82.py . 296
15.14 Output of romantest82.py against roman82.py . 296
15.15 roman83.py . 297
15.16 Output of romantest83.py against roman83.py . 298
15.17 roman9.py . 298
15.18 Output of romantest9.py against roman9.py . 300
16.1 regression.py . 302
16.2 Sample output of regression.py . 303
16.3 fullpath.py . 304
16.4 Further explanation of os.path.abspath . 304
16.5 Sample output from fullpath.py . 305
16.6 Running scripts in the current directory . 306
16.7 Introducing filter . 307
16.8 filter in regression.py . 308
16.9 Filtering using list comprehensions instead . 309
16.10 Introducing map . 309
16.11 map with lists of mixed datatypes . 310
16.12 map in regression.py . 310
16.13 Importing multiple modules at once . 312
16.14 Importing modules dynamically . 312
16.15 Importing a list of modules dynamically . 313
16.16 The regressionTest function . 314
16.17 Step 1: Get all the files . 314
16.18 Step 2: Filter to find the files you care about . 314
16.19 Step 3: Map filenames to module names . 315
16.20 Step 4: Mapping module names to modules . 315

xvi

16.21 Step 5: Loading the modules into a test suite . 316
16.22 Step 6: Telling unittest to use your test suite . 317
17.1 plural1.py . 319
17.2 Introducing re.sub . 319
17.3 Back to plural1.py . 320
17.4 More on negation regular expressions . 320
17.5 More on re.sub . 321
17.6 plural2.py . 322
17.7 Unrolling the plural function . 323
17.8 plural3.py . 324
17.9 plural4.py . 325
17.10 plural4.py continued . 326
17.11 Unrolling the rules definition . 326
17.12 plural4.py, finishing up . 327
17.13 Another look at buildMatchAndApplyFunctions . 327
17.14 Expanding tuples when calling functions . 327
17.15 rules.en . 328
17.16 plural5.py . 328
17.17 plural6.py . 330
17.18 Introducing generators . 330
17.19 Using generators instead of recursion . 331
17.20 Generators in for loops . 332
17.21 Generators that generate dynamic functions . 332
18.1 soundex/stage1/soundex1a.py . 335
18.2 Introducing timeit . 337
18.3 Best Result So Far: soundex/stage1/soundex1e.py . 341
18.4 Best Result So Far: soundex/stage2/soundex2c.py . 345
18.5 Best Result So Far: soundex/stage2/soundex2c.py . 348

1

1 Installing Python

Welcome to Python. Let’s dive in. In this chapter, you’ll install the version of
Python that’s right for you.

1.1 Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?

If you’re using an account on a hosted server, your ISP may have already installed Python.
Most popular Linux distributions come with Python in the default installation. Mac OS X 10.2
and later includes a command-line version of Python, although you’ll probably want to install
a version that includes a more Mac-like graphical interface.

Windows does not come with any version of Python, but don’t despair! There are several ways
to point-and-click your way to Python on Windows.

As you can see already, Python runs on a great many operating systems. The full list includes
Windows, Mac OS, Mac OS X, and all varieties of free UNIX-compatible systems like Linux.
There are also versions that run on Sun Solaris, AS/400, Amiga, OS/2, BeOS, and a plethora
of other platforms you’ve probably never even heard of.

What’s more, Python programs written on one platform can, with a little care, run on any
supported platform. For instance, I regularly develop Python programs on Windows and later
deploy them on Linux.

So back to the question that started this section, “Which Python is right for you?” The answer
is whichever one runs on the computer you already have.

1.2 Python on Windows

On Windows, you have a couple choices for installing Python.

ActiveState makes a Windows installer for Python called ActivePython, which includes a com-
plete version of Python, an IDE with a Python-aware code editor, plus some Windows ex-
tensions for Python that allow complete access to Windows-specific services, APIs, and the
Windows Registry.

ActivePython is freely downloadable, although it is not open source. It is the IDE I used to
learn Python, and I recommend you try it unless you have a specific reason not to. One such
reason might be that ActiveState is generally several months behind in updating their Ac-
tivePython installer when new version of Python are released. If you absolutely need the latest

2

version of Python and ActivePython is still a version behind as you read this, you’ll want to
use the second option for installing Python on Windows.

The second option is the “official” Python installer, distributed by the people who develop
Python itself. It is freely downloadable and open source, and it is always current with the
latest version of Python.

Here is the procedure for installing ActivePython:

1. Download ActivePython from http://www.activestate.com/Products/ActivePython/.

2. If you are using Windows 95, Windows 98, or Windows ME, you will also need to down-
load and install Windows Installer 2.0 before installing ActivePython.

3. Double-click the installer, ActivePython-2.2.2-224-win32-ix86.msi.

4. Step through the installer program.

5. If space is tight, you can do a custom installation and deselect the documentation, but I
don’t recommend this unless you absolutely can’t spare the 14MB.

6. After the installation is complete, close the installer and choose Start->Programs->ActiveState
ActivePython 2.2->PythonWin IDE. You’ll see something like the following:

PythonWin 2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)] on win32.
Portions Copyright 1994-2001 Mark Hammond (mhammond@skippinet.com.au) -
see ’Help/About PythonWin’ for further copyright information.
>>>

1. Download the latest Python Windows installer by going to http://www.python.org/ftp
/python/ and selecting the highest version number listed, then downloading the .exe
installer.

2. Double-click the installer, Python-2.xxx.yyy.exe. The name will depend on the version
of Python available when you read this.

3. Step through the installer program.

4. If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Tools/),
and/or the test suite (Lib/test/).

5. If you do not have administrative rights on your machine, you can select Advanced Op-
tions, then choose Non-Admin Install. This just affects where Registry entries and Start
menu shortcuts are created.

6. After the installation is complete, close the installer and select Start->Programs->Python
2.3->IDLE (Python GUI). You’ll see something like the following:

http://www.activestate.com/Products/ActivePython/
http://www.activestate.com/Products/ActivePython/
http://www.activestate.com/Products/ActivePython/
http://www.activestate.com/Products/ActivePython/
http://www.activestate.com/Products/ActivePython/
http://www.activestate.com/Products/ActivePython/
http://www.activestate.com/Products/ActivePython/
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

3

Python 2.3.2 (#49, Oct 2 2003, 20:02:00) [MSC v.1200 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.

**
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer’s internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.
**

IDLE 1.0
>>>

1.3 Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don’t
install it. You probably want to install it.

Mac OS X 10.2 and later comes with a command-line version of Python preinstalled. If you
are comfortable with the command line, you can use this version for the first third of the book.
However, the preinstalled version does not come with an XML parser, so when you get to the
XML chapter, you’ll need to install the full version.

Rather than using the preinstalled version, you’ll probably want to install the latest version,
which also comes with a graphical interactive shell.

To use the preinstalled version of Python, follow these steps:

1. Open the /Applications folder.

2. Open the Utilities folder.

3. Double-click Terminal to open a terminal window and get to a command line.

4. Type python at the command prompt.

Try it out:

Welcome to Darwin!
[localhost:~] you% python
Python 2.2 (#1, 07/14/02, 23:25:09)
[GCC Apple cpp-precomp 6.14] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Follow these steps to download and install the latest version of Python:

4

1. Download the MacPython-OSX disk image from http://homepages.cwi.nl/~jack/macpython
/download.html.

2. If your browser has not already done so, double-click MacPython-OSX-2.3-1.dmg to mount
the disk image on your desktop.

3. Double-click the installer, MacPython-OSX.pkg.

4. The installer will prompt you for your administrative username and password.

5. Step through the installer program.

6. After installation is complete, close the installer and open the /Applications folder.

7. Open the MacPython-2.3 folder

8. Double-click PythonIDE to launch Python.

The MacPython IDE should display a splash screen, then take you to the interactive shell. If the
interactive shell does not appear, select Window->Python Interactive (Cmd-0). The opening
window will look something like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)]
Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1
>>>

Note that once you install the latest version, the pre-installed version is still present. If you are
running scripts from the command line, you need to be aware which version of Python you
are using.

Example 1.1. Two versions of Python

[localhost:~] you% python
Python 2.2 (#1, 07/14/02, 23:25:09)
[GCC Apple cpp-precomp 6.14] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you% /usr/local/bin/python
Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html

5

1.4 Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very
simple, and there is only one choice.

Follow these steps to install Python on Mac OS 9:

1. Download the MacPython23full.bin file from http://homepages.cwi.nl/~jack/macpython
/download.html.

2. If your browser does not decompress the file automatically, double-click MacPython23full.bin
to decompress the file with Stuffit Expander.

3. Double-click the installer, MacPython23full.

4. Step through the installer program.

5. AFter installation is complete, close the installer and open the /Applications folder.

6. Open the MacPython-OS9 2.3 folder.

7. Double-click Python IDE to launch Python.

The MacPython IDE should display a splash screen, and then take you to the interactive shell.
If the interactive shell does not appear, select Window->Python Interactive (Cmd-0). You’ll see
a screen like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)]
Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1
>>>

1.5 Python on RedHat Linux

Installing under UNIX-compatible operating systems such as Linux is easy if you’re willing
to install a binary package. Pre-built binary packages are available for most popular Linux
distributions. Or you can always compile from source.

Download the latest Python RPM by going to http://www.python.org/ftp
/python/ and selecting the highest version number listed, then selecting the
rpms/ directory within that. Then download the RPM with the highest version
number. You can install it with the rpm command, as shown here:

http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

6

Example 1.2. Installing on RedHat Linux 9

localhost:~$ su -
Password: [enter your root password]
[root@localhost root]# wget http://python.org/ftp/python/2.3/rpms/redhat-9/python2.3-2.3-
5pydotorg.i386.rpm
Resolving python.org... done.
Connecting to python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 7,495,111 [application/octet-stream]
...
[root@localhost root]# rpm -Uvh python2.3-2.3-5pydotorg.i386.rpm
Preparing... ### [100%]

1:python2.3 ### [100%]
[root@localhost root]# python 1

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits", or "license" for more information.
> [press Ctrl+D to exit]
[root@localhost root]# python2.3 2

Python 2.3 (#1, Sep 12 2003, 10:53:56)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-5)] on linux2
Type "help", "copyright", "credits", or "license" for more information.
> [press Ctrl+D to exit]
[root@localhost root]# which python2.3 3

/usr/bin/python2.3

1 Whoops! Just typing python gives you the older version of Python -- the one that was
installed by default. That’s not the one you want.

2 At the time of this writing, the newest version is called python2.3. You’ll probably want
to change the path on the first line of the sample scripts to point to the newer version.

3 This is the complete path of the newer version of Python that you just installed. Use this
on the #! line (the first line of each script) to ensure that scripts are running under the latest
version of Python, and be sure to type python2.3 to get into the interactive shell.

1.6 Python on Debian GNU/Linux
If you are lucky enough to be running Debian GNU/Linux, you install Python
through the apt command.

Example 1.3. Installing on Debian GNU/Linux

localhost:~$ su -
Password: [enter your root password]

7

localhost:~# apt-get install python
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:

python2.3
Suggested packages:

python-tk python2.3-doc
The following NEW packages will be installed:

python python2.3
0 upgraded, 2 newly installed, 0 to remove and 3 not upgraded.
Need to get 0B/2880kB of archives.
After unpacking 9351kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Selecting previously deselected package python2.3.
(Reading database ... 22848 files and directories currently installed.)
Unpacking python2.3 (from .../python2.3_2.3.1-1_i386.deb) ...
Selecting previously deselected package python.
Unpacking python (from .../python_2.3.1-1_all.deb) ...
Setting up python (2.3.1-1) ...
Setting up python2.3 (2.3.1-1) ...
Compiling python modules in /usr/lib/python2.3 ...
Compiling optimized python modules in /usr/lib/python2.3 ...
localhost:~# exit
logout
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to exit]

1.7 Python Installation from Source
If you prefer to build from source, you can download the Python source code
from http://www.python.org/ftp/python/. Select the highest version num-
ber listed, download the .tgz file), and then do the usual configure, make,
make install dance.

Example 1.4. Installing from source

localhost:~$ su -
Password: [enter your root password]
localhost:~# wget http://www.python.org/ftp/python/2.3/Python-2.3.tgz
Resolving www.python.org... done.
Connecting to www.python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 8,436,880 [application/x-tar]
...

http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

8

localhost:~# tar xfz Python-2.3.tgz
localhost:~# cd Python-2.3
localhost:~/Python-2.3# ./configure
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for --without-gcc... no
...
localhost:~/Python-2.3# make
gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall -Wstrict-prototypes
-I. -I./Include -DPy_BUILD_CORE -o Modules/python.o Modules/python.c
gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall -Wstrict-prototypes
-I. -I./Include -DPy_BUILD_CORE -o Parser/acceler.o Parser/acceler.c
gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall -Wstrict-prototypes
-I. -I./Include -DPy_BUILD_CORE -o Parser/grammar1.o Parser/grammar1.c
...
localhost:~/Python-2.3# make install
/usr/bin/install -c python /usr/local/bin/python2.3
...
localhost:~/Python-2.3# exit
logout
localhost:~$ which python
/usr/local/bin/python
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
localhost:~$

1.8 The Interactive Shell
Now that you have Python installed, what’s this interactive shell thing you’re
running?

It’s like this: Python leads a double life. It’s an interpreter for scripts that you can run from
the command line or run like applications, by double-clicking the scripts. But it’s also an in-
teractive shell that can evaluate arbitrary statements and expressions. This is extremely useful
for debugging, quick hacking, and testing. I even know some people who use the Python
interactive shell in lieu of a calculator!

Launch the Python interactive shell in whatever way works on your platform, and let’s dive
in with the steps shown here:

Example 1.5. First Steps in the Interactive Shell

> 1 + 1 1

2

9

> print ’hello world’ 2

hello world
> x = 1 3

> y = 2
> x + y
3

1 The Python interactive shell can evaluate arbitrary Python expressions, including any ba-
sic arithmetic expression.

2 The interactive shell can execute arbitrary Python statements, including the print state-
ment.

3 You can also assign values to variables, and the values will be remembered as long as the
shell is open (but not any longer than that).

1.9 Summary

You should now have a version of Python installed that works for you.

Depending on your platform, you may have more than one version of Python intsalled. If so,
you need to be aware of your paths. If simply typing python on the command line doesn’t run
the version of Python that you want to use, you may need to enter the full pathname of your
preferred version.

Congratulations, and welcome to Python.

10

2 Your First Python Program

You know how other books go on and on about programming fundamentals and
finally work up to building a complete, working program? Let’s skip all that.

2.1 Diving in

Here is a complete, working Python program.

It probably makes absolutely no sense to you. Don’t worry about that, because you’re going to
dissect it line by line. But read through it first and see what, if anything, you can make of it.

Example 2.1. odbchelper.py

If you have not already done so, you can download this and other examples used in this book.

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

Returns string."""
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "__main__":
myParams = {"server":"mpilgrim", \

"database":"master", \
"uid":"sa", \
"pwd":"secret" \
}

print buildConnectionString(myParams)

Now run this program and see what happens.

Running Programs on Windows
In the ActivePython IDE on Windows, you can run the Python program you’re editing by
choosing File->Run... (Ctrl-R). Output is displayed in the interactive window.

Running Programs on Mac OS
In the Python IDE on Mac OS, you can run a Python program with Python->Run window...
(Cmd-R), but there is an important option you must set first. Open the .py file in the IDE, pop
up the options menu by clicking the black triangle in the upper-right corner of the window,
and make sure the Run as __main__ option is checked. This is a per-file setting, but you’ll only
need to do it once per file.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

11

Running Programs in UNIX
On UNIX-compatible systems (including Mac OS X), you can run a Python program from the
command line: python odbchelper.py

The output of odbchelper.py will look like this:

server=mpilgrim;uid=sa;database=master;pwd=secret

2.2 Declaring Functions

Python has functions like most other languages, but it does not have separate
header files like C++ or interface/implementation sections like Pascal. When
you need a function, just declare it, like this:

def buildConnectionString(params):

Note that the keyword def starts the function declaration, followed by the function name,
followed by the arguments in parentheses. Multiple arguments (not shown here) are separated
with commas.

Also note that the function doesn’t define a return datatype. Python functions do not specify
the datatype of their return value; they don’t even specify whether or not they return a value.
In fact, every Python function returns a value; if the function ever executes a return statement,
it will return that value, otherwise it will return None, the Python null value.

Python vs. Visual Basic: Return Values
In Visual Basic, functions (that return a value) start with function, and subroutines (that do
not return a value) start with sub. There are no subroutines in Python. Everything is a function,
all functions return a value (even if it’s None), and all functions start with def.

The argument, params, doesn’t specify a datatype. In Python, variables are never explicitly
typed. Python figures out what type a variable is and keeps track of it internally.

Python vs. Java: Return Values
In Java, C++, and other statically-typed languages, you must specify the datatype of the func-
tion return value and each function argument. In Python, you never explicitly specify the
datatype of anything. Based on what value you assign, Python keeps track of the datatype
internally.

12

2.2.1 How Python’s Datatypes Compare to Other Programming Languages

An erudite reader sent me this explanation of how Python compares to other programming
languages:

statically typed language

A language in which types are fixed at compile time. Most statically typed languages
enforce this by requiring you to declare all variables with their datatypes before using
them. Java and C are statically typed languages.

dynamically typed language

A language in which types are discovered at execution time; the opposite of statically
typed. VBScript and Python are dynamically typed, because they figure out what type a
variable is when you first assign it a value.

strongly typed language

A language in which types are always enforced. Java and Python are strongly typed. If
you have an integer, you can’t treat it like a string without explicitly converting it.

weakly typed language

A language in which types may be ignored; the opposite of strongly typed. VBScript is
weakly typed. In VBScript, you can concatenate the string ’12’ and the integer 3 to get
the string ’123’, then treat that as the integer 123, all without any explicit conversion.

So Python is both dynamically typed (because it doesn’t use explicit datatype declarations)
and strongly typed (because once a variable has a datatype, it actually matters).

2.3 Documenting Functions

You can document a Python function by giving it a doc string.

Example 2.2. Defining the buildConnectionString Function’s doc string

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

Returns string."""

Triple quotes signify a multi-line string. Everything between the start and end quotes is part
of a single string, including carriage returns and other quote characters. You can use them
anywhere, but you’ll see them most often used when defining a doc string.

13

Python vs. Perl: Quoting
Triple quotes are also an easy way to define a string with both single and double quotes, like
qq/.../ in Perl.

Everything between the triple quotes is the function’s doc string, which documents what
the function does. A doc string, if it exists, must be the first thing defined in a function
(that is, the first thing after the colon). You don’t technically need to give your function a doc
string, but you always should. I know you’ve heard this in every programming class you’ve
ever taken, but Python gives you an added incentive: the doc string is available at runtime
as an attribute of the function.

Why doc strings are a Good Thing
Many Python IDEs use the doc string to provide context-sensitive documentation, so that
when you type a function name, its doc string appears as a tooltip. This can be incredibly
helpful, but it’s only as good as the doc strings you write.

Further Reading on Documenting Functions

• PEP 257 defines doc string conventions.

• Python Style Guide discusses how to write a good doc string.

• Python Tutorial discusses conventions for spacing in doc strings.

2.4 Everything Is an Object

In case you missed it, I just said that Python functions have attributes, and that those attributes
are available at runtime.

A function, like everything else in Python, is an object.

Open your favorite Python IDE and follow along:

Example 2.3. Accessing the buildConnectionString Function’s doc string

> import odbchelper 1

> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
> print odbchelper.buildConnectionString(params) 2

server=mpilgrim;uid=sa;database=master;pwd=secret
> print odbchelper.buildConnectionString.__doc__ 3

Build a connection string from a dictionary

Returns string.

http://www.python.org/peps/pep-0257.html
http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

14

1 The first line imports the odbchelper program as a module -- a chunk of code that you can
use interactively, or from a larger Python program. (You’ll see examples of multi-module
Python programs in Chapter 4.) Once you import a module, you can reference any of its
public functions, classes, or attributes. Modules can do this to access functionality in other
modules, and you can do it in the IDE too. This is an important concept, and you’ll talk
more about it later.

2 When you want to use functions defined in imported modules, you need to include the
module name. So you can’t just say buildConnectionString; it must be odbchelper.buildConnectionString.
If you’ve used classes in Java, this should feel vaguely familiar.

3 Instead of calling the function as you would expect to, you asked for one of the function’s
attributes, __doc__.

Python vs. Perl: import
import in Python is like require in Perl. Once you import a Python module, you access its
functions with module.function; once you require a Perl module, you access its functions
with module::function.

2.4.1 The Import Search Path

Before you go any further, I want to briefly mention the library search path. Python looks
in several places when you try to import a module. Specifically, it looks in all the directories
defined in sys.path. This is just a list, and you can easily view it or modify it with standard
list methods. (You’ll learn more about lists later in this chapter.)

Example 2.4. Import Search Path

> import sys 1

> sys.path 2

[’’, ’/usr/local/lib/python2.2’, ’/usr/local/lib/python2.2/plat-linux2’,
’/usr/local/lib/python2.2/lib-dynload’, ’/usr/local/lib/python2.2/site-packages’,
’/usr/local/lib/python2.2/site-packages/PIL’, ’/usr/local/lib/python2.2/site-packages/piddle’]
> sys 3

<module ’sys’ (built-in)>
> sys.path.append(’/my/new/path’) 4

1 Importing the sys module makes all of its functions and attributes available.

2 sys.path is a list of directory names that constitute the current search path. (Yours will
look different, depending on your operating system, what version of Python you’re run-
ning, and where it was originally installed.) Python will look through these directories (in
this order) for a .py file matching the module name you’re trying to import.

15

3 Actually, I lied; the truth is more complicated than that, because not all modules are stored
as .py files. Some, like the sys module, are "built-in modules"; they are actually baked
right into Python itself. Built-in modules behave just like regular modules, but their Python
source code is not available, because they are not written in Python! (The sys module is
written in C.)

4 You can add a new directory to Python’s search path at runtime by appending the direc-
tory name to sys.path, and then Python will look in that directory as well, whenever you
try to import a module. The effect lasts as long as Python is running. (You’ll talk more
about append and other list methods in Chapter 3.)

2.4.2 What’s an Object?

Everything in Python is an object, and almost everything has attributes and methods. All
functions have a built-in attribute __doc__, which returns the doc string defined in the
function’s source code. The sys module is an object which has (among other things) an at-
tribute called path. And so forth.

Still, this begs the question. What is an object? Different programming languages define “ob-
ject” in different ways. In some, it means that all objects must have attributes and methods;
in others, it means that all objects are subclassable. In Python, the definition is looser; some
objects have neither attributes nor methods (more on this in Chapter 3), and not all objects are
subclassable (more on this in Chapter 5). But everything is an object in the sense that it can be
assigned to a variable or passed as an argument to a function (more in this in Chapter 4).

This is so important that I’m going to repeat it in case you missed it the first few times: every-
thing in Python is an object. Strings are objects. Lists are objects. Functions are objects. Even
modules are objects.

Further Reading on Objects

• Python Reference Manual explains exactly what it means to say that everything in Python
is an object, because some people are pedantic and like to discuss this sort of thing at great
length.

• eff-bot summarizes Python objects.

2.5 Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark
where the function code starts and stops. The only delimiter is a colon (:) and
the indentation of the code itself.

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.python.org/doc/current/ref/objects.html
http://www.python.org/doc/current/ref/objects.html
http://www.python.org/doc/current/ref/objects.html
http://www.python.org/doc/current/ref/objects.html
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm
http://www.effbot.org/guides/python-objects.htm

16

Example 2.5. Indenting the buildConnectionString Function

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

Returns string."""
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

Code blocks are defined by their indentation. By "code block", I mean functions, if statements,
for loops, while loops, and so forth. Indenting starts a block and unindenting ends it. There
are no explicit braces, brackets, or keywords. This means that whitespace is significant, and
must be consistent. In this example, the function code (including the doc string) is indented
four spaces. It doesn’t need to be four spaces, it just needs to be consistent. The first line that
is not indented is outside the function.

Example 2.6 shows an example of code indentation with if statements.

Example 2.6. if Statements

def fib(n): 1

print ’n =’, n 2

if n > 1: 3

return n * fib(n - 1)
else: 4

print ’end of the line’
return 1

1 This is a function named fib that takes one argument, n. All the code within the function
is indented.

2 Printing to the screen is very easy in Python, just use print. print statements can take
any data type, including strings, integers, and other native types like dictionaries and lists
that you’ll learn about in the next chapter. You can even mix and match to print several
things on one line by using a comma-separated list of values. Each value is printed on the
same line, separated by spaces (the commas don’t print). So when fib is called with 5, this
will print "n = 5".

3 if statements are a type of code block. If the if expression evaluates to true, the indented
block is executed, otherwise it falls to the else block.

4 Of course if and else blocks can contain multiple lines, as long as they are all indented
the same amount. This else block has two lines of code in it. There is no other special
syntax for multi-line code blocks. Just indent and get on with your life.

17

After some initial protests and several snide analogies to Fortran, you will make peace with
this and start seeing its benefits. One major benefit is that all Python programs look similar,
since indentation is a language requirement and not a matter of style. This makes it easier to
read and understand other people’s Python code.

Python vs. Java: Separating Statements
Python uses carriage returns to separate statements and a colon and indentation to separate
code blocks. C++ and Java use semicolons to separate statements and curly braces to separate
code blocks.

Further Reading on Code Indentation

• Python Reference Manual discusses cross-platform indentation issues and shows various
indentation errors.

• Python Style Guide discusses good indentation style.

2.6 Testing Modules
Python modules are objects and have several useful attributes. You can use this
to easily test your modules as you write them. Here’s an example that uses the
if __name__ trick.

if __name__ == "__main__":

Some quick observations before you get to the good stuff. First, parentheses are not required
around the if expression. Second, the if statement ends with a colon, and is followed by
indented code.

Python vs. C: Comparison and Assignment
Like C, Python uses == for comparison and = for assignment. Unlike C, Python does not sup-
port in-line assignment, so there’s no chance of accidentally assigning the value you thought
you were comparing.

So why is this particular if statement a trick? Modules are objects, and all modules have a
built-in attribute __name__. A module’s __name__ depends on how you’re using the module.
If you import the module, then __name__ is the module’s filename, without a directory path
or file extension. But you can also run the module directly as a standalone program, in which
case __name__ will be a special default value, __main__.

>>> import odbchelper
>>> odbchelper.__name__
’odbchelper’

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/essays/styleguide.html

18

Knowing this, you can design a test suite for your module within the module itself by putting
it in this if statement. When you run the module directly, __name__ is __main__, so the test
suite executes. When you import the module, __name__ is something else, so the test suite is
ignored. This makes it easier to develop and debug new modules before integrating them into
a larger program.

if __name__ on Mac OS
On MacPython, there is an additional step to make the if __name__ trick work. Pop up the
module’s options menu by clicking the black triangle in the upper-right corner of the window,
and make sure Run as __main__ is checked.

Further Reading on Importing Modules

• Python Reference Manual discusses the low-level details of importing modules.

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html
http://www.python.org/doc/current/ref/import.html

19

3 Native Datatypes

You’ll get back to your first Python program in just a minute. But first, a short digression is in
order, because you need to know about dictionaries, tuples, and lists (oh my!). If you’re a Perl
hacker, you can probably skim the bits about dictionaries and lists, but you should still pay
attention to tuples.

3.1 Introducing Dictionaries

One of Python’s built-in datatypes is the dictionary, which defines one-to-one
relationships between keys and values.

Python vs. Perl: Dictionaries
A dictionary in Python is like a hash in Perl. In Perl, variables that store hashes always start
with a % character. In Python, variables can be named anything, and Python keeps track of the
datatype internally.

Python vs. Java: Dictionaries
A dictionary in Python is like an instance of the Hashtable class in Java.

Python vs. Visual Basic: Dictionaries
A dictionary in Python is like an instance of the Scripting.Dictionary object in Visual
Basic.

3.1.1 Defining Dictionaries

Example 3.1. Defining a Dictionary

> d = {"server":"mpilgrim", "database":"master"} 1

> d
{’server’: ’mpilgrim’, ’database’: ’master’}
> d["server"] 2

’mpilgrim’
> d["database"] 3

’master’
> d["mpilgrim"] 4

Traceback (innermost last):
File "<interactive input>", line 1, in ?

KeyError: mpilgrim

20

1 First, you create a new dictionary with two elements and assign it to the variable d. Each
element is a key-value pair, and the whole set of elements is enclosed in curly braces.

2 ’server’ is a key, and its associated value, referenced by d["server"], is ’mpilgrim’.

3 ’database’ is a key, and its associated value, referenced by d["database"], is ’master’.

4 You can get values by key, but you can’t get keys by value. So d["server"] is ’mpilgrim’,
but d["mpilgrim"] raises an exception, because ’mpilgrim’ is not a key.

3.1.2 Modifying Dictionaries

Example 3.2. Modifying a Dictionary

> d
{’server’: ’mpilgrim’, ’database’: ’master’}
> d["database"] = "pubs" 1

> d
{’server’: ’mpilgrim’, ’database’: ’pubs’}
> d["uid"] = "sa" 2

> d
{’server’: ’mpilgrim’, ’uid’: ’sa’, ’database’: ’pubs’}

1 You can not have duplicate keys in a dictionary. Assigning a value to an existing key will
wipe out the old value.

2 You can add new key-value pairs at any time. This syntax is identical to modifying exist-
ing values. (Yes, this will annoy you someday when you think you are adding new values
but are actually just modifying the same value over and over because your key isn’t chang-
ing the way you think it is.)

Note that the new element (key ’uid’, value ’sa’) appears to be in the middle. In fact, it was
just a coincidence that the elements appeared to be in order in the first example; it is just as
much a coincidence that they appear to be out of order now.

Dictionaries are unordered
Dictionaries have no concept of order among elements. It is incorrect to say that the elements
are “out of order”; they are simply unordered. This is an important distinction that will an-
noy you when you want to access the elements of a dictionary in a specific, repeatable order
(like alphabetical order by key). There are ways of doing this, but they’re not built into the
dictionary.

21

When working with dictionaries, you need to be aware that dictionary keys are case-sensitive.

Example 3.3. Dictionary Keys Are Case-Sensitive

> d = {}
> d["key"] = "value"
> d["key"] = "other value" 1

> d
{’key’: ’other value’}
> d["Key"] = "third value" 2

> d
{’Key’: ’third value’, ’key’: ’other value’}

1 Assigning a value to an existing dictionary key simply replaces the old value with a new
one.

2 This is not assigning a value to an existing dictionary key, because strings in Python are
case-sensitive, so ’key’ is not the same as ’Key’. This creates a new key/value pair in
the dictionary; it may look similar to you, but as far as Python is concerned, it’s completely
different.

Example 3.4. Mixing Datatypes in a Dictionary

> d
{’server’: ’mpilgrim’, ’uid’: ’sa’, ’database’: ’pubs’}
> d["retrycount"] = 3 1

> d
{’server’: ’mpilgrim’, ’uid’: ’sa’, ’database’: ’master’, ’retrycount’: 3}
> d[42] = "douglas" 2

> d
{’server’: ’mpilgrim’, ’uid’: ’sa’, ’database’: ’master’,
42: ’douglas’, ’retrycount’: 3}

1 Dictionaries aren’t just for strings. Dictionary values can be any datatype, including
strings, integers, objects, or even other dictionaries. And within a single dictionary, the
values don’t all need to be the same type; you can mix and match as needed.

2 Dictionary keys are more restricted, but they can be strings, integers, and a few other
types. You can also mix and match key datatypes within a dictionary.

3.1.3 Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

> d
{’server’: ’mpilgrim’, ’uid’: ’sa’, ’database’: ’master’,

22

42: ’douglas’, ’retrycount’: 3}
> del d[42] 1

> d
{’server’: ’mpilgrim’, ’uid’: ’sa’, ’database’: ’master’, ’retrycount’: 3}
> d.clear() 2

> d
{}

1 del lets you delete individual items from a dictionary by key.

2 clear deletes all items from a dictionary. Note that the set of empty curly braces signifies
a dictionary without any items.

Further Reading on Dictionaries

• How to Think Like a Computer Scientist teaches about dictionaries and shows how to use
dictionaries to model sparse matrices.

• Python Knowledge Base has a lot of example code using dictionaries.

• Python Cookbook discusses how to sort the values of a dictionary by key.

• Python Library Reference summarizes all the dictionary methods.

3.2 Introducing Lists

Lists are Python’s workhorse datatype. If your only experience with lists is arrays
in Visual Basic or (God forbid) the datastore in Powerbuilder, brace yourself for
Python lists.

Python vs. Perl: lists
A list in Python is like an array in Perl. In Perl, variables that store arrays always start with
the @ character; in Python, variables can be named anything, and Python keeps track of the
datatype internally.

Python vs. Java: lists
A list in Python is much more than an array in Java (although it can be used as one if that’s
really all you want out of life). A better analogy would be to the ArrayList class, which can
hold arbitrary objects and can expand dynamically as new items are added.

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html
http://www.python.org/doc/current/lib/typesmapping.html
http://www.python.org/doc/current/lib/typesmapping.html
http://www.python.org/doc/current/lib/typesmapping.html

23

3.2.1 Defining Lists

Example 3.6. Defining a List

> li = ["a", "b", "mpilgrim", "z", "example"] 1

> li
[’a’, ’b’, ’mpilgrim’, ’z’, ’example’]
> li[0] 2

’a’
> li[4] 3

’example’

1 First, you define a list of five elements. Note that they retain their original order. This is
not an accident. A list is an ordered set of elements enclosed in square brackets.

2 A list can be used like a zero-based array. The first element of any non-empty list is always
li[0].

3 The last element of this five-element list is li[4], because lists are always zero-based.

Example 3.7. Negative List Indices

> li
[’a’, ’b’, ’mpilgrim’, ’z’, ’example’]
> li[-1] 1

’example’
> li[-3] 2

’mpilgrim’

1 A negative index accesses elements from the end of the list counting backwards. The last
element of any non-empty list is always li[-1].

2 If the negative index is confusing to you, think of it this way: li[-n] == li[len(li) -
n]. So in this list, li[-3] == li[5 - 3] == li[2].

Example 3.8. Slicing a List

> li
[’a’, ’b’, ’mpilgrim’, ’z’, ’example’]
> li[1:3] 1

[’b’, ’mpilgrim’]
> li[1:-1] 2

[’b’, ’mpilgrim’, ’z’]
> li[0:3] 3

[’a’, ’b’, ’mpilgrim’]

24

1 You can get a subset of a list, called a “slice”, by specifying two indices. The return value
is a new list containing all the elements of the list, in order, starting with the first slice index
(in this case li[1]), up to but not including the second slice index (in this case li[3]).

2 Slicing works if one or both of the slice indices is negative. If it helps, you can think of it
this way: reading the list from left to right, the first slice index specifies the first element
you want, and the second slice index specifies the first element you don’t want. The return
value is everything in between.

3 Lists are zero-based, so li[0:3] returns the first three elements of the list, starting at
li[0], up to but not including li[3].

Example 3.9. Slicing Shorthand

> li
[’a’, ’b’, ’mpilgrim’, ’z’, ’example’]
> li[:3] 1

[’a’, ’b’, ’mpilgrim’]
> li[3:] 2 3

[’z’, ’example’]
> li[:] 4

[’a’, ’b’, ’mpilgrim’, ’z’, ’example’]

1 If the left slice index is 0, you can leave it out, and 0 is implied. So li[:3] is the same as
li[0:3] from Example 3.8.

2 Similarly, if the right slice index is the length of the list, you can leave it out. So li[3:] is
the same as li[3:5], because this list has five elements.

3 Note the symmetry here. In this five-element list, li[:3] returns the first 3 elements,
and li[3:] returns the last two elements. In fact, li[:n] will always return the first n
elements, and li[n:] will return the rest, regardless of the length of the list.

4 If both slice indices are left out, all elements of the list are included. But this is not the same
as the original li list; it is a new list that happens to have all the same elements. li[:] is
shorthand for making a complete copy of a list.

3.2.2 Adding Elements to Lists

Example 3.10. Adding Elements to a List

> li
[’a’, ’b’, ’mpilgrim’, ’z’, ’example’]

25

> li.append("new") 1

> li
[’a’, ’b’, ’mpilgrim’, ’z’, ’example’, ’new’]
> li.insert(2, "new") 2

> li
[’a’, ’b’, ’new’, ’mpilgrim’, ’z’, ’example’, ’new’]
> li.extend(["two", "elements"]) 3

> li
[’a’, ’b’, ’new’, ’mpilgrim’, ’z’, ’example’, ’new’, ’two’, ’elements’]

1 append adds a single element to the end of the list.

2 insert inserts a single element into a list. The numeric argument is the index of the first
element that gets bumped out of position. Note that list elements do not need to be unique;
there are now two separate elements with the value ’new’, li[2] and li[6].

3 extend concatenates lists. Note that you do not call extend with multiple arguments;
you call it with one argument, a list. In this case, that list has two elements.

Example 3.11. The Difference between extend and append

> li = [’a’, ’b’, ’c’]
> li.extend([’d’, ’e’, ’f’]) 1

> li
[’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
> len(li) 2

6
> li[-1]
’f’
> li = [’a’, ’b’, ’c’]
> li.append([’d’, ’e’, ’f’]) 3

> li
[’a’, ’b’, ’c’, [’d’, ’e’, ’f’]]
> len(li) 4

4
> li[-1]
[’d’, ’e’, ’f’]

1 Lists have two methods, extend and append, that look like they do the same thing, but
are in fact completely different. extend takes a single argument, which is always a list, and
adds each of the elements of that list to the original list.

2 Here you started with a list of three elements (’a’, ’b’, and ’c’), and you extended the
list with a list of another three elements (’d’, ’e’, and ’f’), so you now have a list of six
elements.

26

3 On the other hand, append takes one argument, which can be any data type, and sim-
ply adds it to the end of the list. Here, you’re calling the append method with a single
argument, which is a list of three elements.

4 Now the original list, which started as a list of three elements, contains four elements.
Why four? Because the last element that you just appended is itself a list. Lists can contain
any type of data, including other lists. That may be what you want, or maybe not. Don’t
use append if you mean extend.

3.2.3 Searching Lists

Example 3.12. Searching a List

> li
[’a’, ’b’, ’new’, ’mpilgrim’, ’z’, ’example’, ’new’, ’two’, ’elements’]
> li.index("example") 1

5
> li.index("new") 2

2
> li.index("c") 3

Traceback (innermost last):
File "<interactive input>", line 1, in ?

ValueError: list.index(x): x not in list
> "c" in li 4

False

1 index finds the first occurrence of a value in the list and returns the index.

2 index finds the first occurrence of a value in the list. In this case, ’new’ occurs twice in
the list, in li[2] and li[6], but index will return only the first index, 2.

3 If the value is not found in the list, Python raises an exception. This is notably different
from most languages, which will return some invalid index. While this may seem an-
noying, it is a good thing, because it means your program will crash at the source of the
problem, rather than later on when you try to use the invalid index.

4 To test whether a value is in the list, use in, which returns True if the value is found or
False if it is not.

What’s True in Python?
Before version 2.2.1, Python had no separate boolean datatype. To compensate for this, Python
accepted almost anything in a boolean context (like an if statement), according to the follow-
ing rules:

27

• 0 is false; all other numbers are true.

• An empty string ("") is false, all other strings are true.

• An empty list ([]) is false; all other lists are true.

• An empty tuple (()) is false; all other tuples are true.

• An empty dictionary ({}) is false; all other dictionaries are true.

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean,
which has a value of True or False. Note the capitalization; these values, like everything else
in Python, are case-sensitive.

3.2.4 Deleting List Elements

Example 3.13. Removing Elements from a List

> li
[’a’, ’b’, ’new’, ’mpilgrim’, ’z’, ’example’, ’new’, ’two’, ’elements’]
> li.remove("z") 1

> li
[’a’, ’b’, ’new’, ’mpilgrim’, ’example’, ’new’, ’two’, ’elements’]
> li.remove("new") 2

> li
[’a’, ’b’, ’mpilgrim’, ’example’, ’new’, ’two’, ’elements’]
> li.remove("c") 3

Traceback (innermost last):
File "<interactive input>", line 1, in ?

ValueError: list.remove(x): x not in list
> li.pop() 4

’elements’
> li
[’a’, ’b’, ’mpilgrim’, ’example’, ’new’, ’two’]

1 remove removes the first occurrence of a value from a list.

2 remove removes only the first occurrence of a value. In this case, ’new’ appeared twice
in the list, but li.remove("new") removed only the first occurrence.

3 If the value is not found in the list, Python raises an exception. This mirrors the behavior
of the index method.

4 pop is an interesting beast. It does two things: it removes the last element of the list, and it
returns the value that it removed. Note that this is different from li[-1], which returns a

28

value but does not change the list, and different from li.remove(value), which changes
the list but does not return a value.

3.2.5 Using List Operators

Example 3.14. List Operators

> li = [’a’, ’b’, ’mpilgrim’]
> li = li + [’example’, ’new’] 1

> li
[’a’, ’b’, ’mpilgrim’, ’example’, ’new’]
> li += [’two’] 2

> li
[’a’, ’b’, ’mpilgrim’, ’example’, ’new’, ’two’]
> li = [1, 2] * 3 3

> li
[1, 2, 1, 2, 1, 2]

1 Lists can also be concatenated with the + operator. list = list + otherlist has the
same result as list.extend(otherlist). But the + operator returns a new (concate-
nated) list as a value, whereas extend only alters an existing list. This means that extend
is faster, especially for large lists.

2 Python supports the += operator. li += [’two’] is equivalent to li.extend([’two’]).
The += operator works for lists, strings, and integers, and it can be overloaded to work for
user-defined classes as well. (More on classes in Chapter 5.)

3 The * operator works on lists as a repeater. li = [1, 2] * 3 is equivalent to li = [1,
2] + [1, 2] + [1, 2], which concatenates the three lists into one.

Further Reading on Lists

• How to Think Like a Computer Scientist teaches about lists and makes an important point
about passing lists as function arguments.

• Python Tutorial shows how to use lists as stacks and queues.

• Python Knowledge Base answers common questions about lists and has a lot of example
code using lists.

• Python Library Reference summarizes all the list methods.

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html
http://www.python.org/doc/current/lib/typesseq-mutable.html
http://www.python.org/doc/current/lib/typesseq-mutable.html
http://www.python.org/doc/current/lib/typesseq-mutable.html

29

3.3 Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is
created.

Example 3.15. Defining a tuple

> t = ("a", "b", "mpilgrim", "z", "example") 1

> t
(’a’, ’b’, ’mpilgrim’, ’z’, ’example’)
> t[0] 2

’a’
> t[-1] 3

’example’
> t[1:3] 4

(’b’, ’mpilgrim’)

1 A tuple is defined in the same way as a list, except that the whole set of elements is en-
closed in parentheses instead of square brackets.

2 The elements of a tuple have a defined order, just like a list. Tuples indices are zero-based,
just like a list, so the first element of a non-empty tuple is always t[0].

3 Negative indices count from the end of the tuple, just as with a list.

4 Slicing works too, just like a list. Note that when you slice a list, you get a new list; when
you slice a tuple, you get a new tuple.

Example 3.16. Tuples Have No Methods

> t
(’a’, ’b’, ’mpilgrim’, ’z’, ’example’)
> t.append("new") 1

Traceback (innermost last):
File "<interactive input>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’append’
> t.remove("z") 2

Traceback (innermost last):
File "<interactive input>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’remove’
> t.index("example") 3

Traceback (innermost last):
File "<interactive input>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’index’
> "z" in t 4

True

30

1 You can’t add elements to a tuple. Tuples have no append or extend method.

2 You can’t remove elements from a tuple. Tuples have no remove or pop method.

3 You can’t find elements in a tuple. Tuples have no index method.

4 You can, however, use in to see if an element exists in the tuple.

So what are tuples good for?

• Tuples are faster than lists. If you’re defining a constant set of values and all you’re ever
going to do with it is iterate through it, use a tuple instead of a list.

• It makes your code safer if you “write-protect” data that does not need to be changed.
Using a tuple instead of a list is like having an implied assert statement that shows this
data is constant, and that special thought (and a specific function) is required to override
that.

• Remember that I said that dictionary keys can be integers, strings, and “a few other types”?
Tuples are one of those types. Tuples can be used as keys in a dictionary, but lists can’t
be used this way.Actually, it’s more complicated than that. Dictionary keys must be im-
mutable. Tuples themselves are immutable, but if you have a tuple of lists, that counts as
mutable and isn’t safe to use as a dictionary key. Only tuples of strings, numbers, or other
dictionary-safe tuples can be used as dictionary keys.

• Tuples are used in string formatting, as you’ll see shortly.

Tuples into lists into tuples
Tuples can be converted into lists, and vice-versa. The built-in tuple function takes a list and
returns a tuple with the same elements, and the list function takes a tuple and returns a list.
In effect, tuple freezes a list, and list thaws a tuple.

Further Reading on Tuples

• How to Think Like a Computer Scientist teaches about tuples and shows how to concatenate
tuples.

• Python Knowledge Base shows how to sort a tuple.

• Python Tutorial shows how to define a tuple with one element.

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

31

3.4 Declaring variables
Now that you know something about dictionaries, tuples, and lists (oh my!), let’s get back to
the sample program from Chapter 2, odbchelper.py.

Python has local and global variables like most other languages, but it has no
explicit variable declarations. Variables spring into existence by being assigned
a value, and they are automatically destroyed when they go out of scope.

Example 3.17. Defining the myParams Variable

if __name__ == "__main__":
myParams = {"server":"mpilgrim", \

"database":"master", \
"uid":"sa", \
"pwd":"secret" \
}

Notice the indentation. An if statement is a code block and needs to be indented just like a
function.

Also notice that the variable assignment is one command split over several lines, with a back-
slash (“\”) serving as a line-continuation marker.

Writing Multiline Commands
When a command is split among several lines with the line-continuation marker (“\”), the
continued lines can be indented in any manner; Python’s normally stringent indentation rules
do not apply. If your Python IDE auto-indents the continued line, you should probably accept
its default unless you have a burning reason not to.

Strictly speaking, expressions in parentheses, straight brackets, or curly braces (like defining
a dictionary) can be split into multiple lines with or without the line continuation character
(“\”). I like to include the backslash even when it’s not required because I think it makes the
code easier to read, but that’s a matter of style.

Third, you never declared the variable myParams, you just assigned a value to it. This is like
VBScript without the option explicit option. Luckily, unlike VBScript, Python will not
allow you to reference a variable that has never been assigned a value; trying to do so will
raise an exception.

3.4.1 Referencing Variables

Example 3.18. Referencing an Unbound Variable

>>> x
Traceback (innermost last):

32

File "<interactive input>", line 1, in ?
NameError: There is no variable named ’x’
>>> x = 1
>>> x
1

You will thank Python for this one day.

3.4.2 Assigning Multiple Values at Once

One of the cooler programming shortcuts in Python is using sequences to assign multiple
values at once.

Example 3.19. Assigning multiple values at once

> v = (’a’, ’b’, ’e’)
> (x, y, z) = v 1

> x
’a’
> y
’b’
> z
’e’

1 v is a tuple of three elements, and (x, y, z) is a tuple of three variables. Assigning one
to the other assigns each of the values of v to each of the variables, in order.

This has all sorts of uses. I often want to assign names to a range of values. In C, you would
use enum and manually list each constant and its associated value, which seems especially
tedious when the values are consecutive. In Python, you can use the built-in range function
with multi-variable assignment to quickly assign consecutive values.

Example 3.20. Assigning Consecutive Values

> range(7) 1

[0, 1, 2, 3, 4, 5, 6]
> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) 2

> MONDAY 3

0
> TUESDAY
1
> SUNDAY
6

1 The built-in range function returns a list of integers. In its simplest form, it takes an upper
limit and returns a zero-based list counting up to but not including the upper limit. (If you

33

like, you can pass other parameters to specify a base other than 0 and a step other than 1.
You can print range.__doc__ for details.)

2 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the vari-
ables you’re defining. (This example came from the calendar module, a fun little module
that prints calendars, like the UNIX program cal. The calendar module defines integer
constants for days of the week.)

3 Now each variable has its value: MONDAY is 0, TUESDAY is 1, and so forth.

You can also use multi-variable assignment to build functions that return multiple values, sim-
ply by returning a tuple of all the values. The caller can treat it as a tuple, or assign the values to
individual variables. Many standard Python libraries do this, including the os module, which
you’ll discuss in Chapter 6.

Further Reading on Variables

• Python Reference Manual shows examples of when you can skip the line continuation
character and when you need to use it.

• How to Think Like a Computer Scientist shows how to use multi-variable assignment to
swap the values of two variables.

3.5 Formatting Strings

Python supports formatting values into strings. Although this can include very
complicated expressions, the most basic usage is to insert values into a string
with the %s placeholder.

Python vs. C: String Formatting
String formatting in Python uses the same syntax as the sprintf function in C.

Example 3.21. Introducing String Formatting

> k = "uid"
> v = "sa"
> "%s=%s" % (k, v) 1

’uid=sa’

1 The whole expression evaluates to a string. The first %s is replaced by the value of k; the
second %s is replaced by the value of v. All other characters in the string (in this case, the
equal sign) stay as they are.

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

34

Note that (k, v) is a tuple. I told you they were good for something.

You might be thinking that this is a lot of work just to do simple string concatentation, and
you would be right, except that string formatting isn’t just concatenation. It’s not even just
formatting. It’s also type coercion.

Example 3.22. String Formatting vs. Concatenating

> uid = "sa"
> pwd = "secret"
> print pwd + " is not a good password for " + uid 1

secret is not a good password for sa
> print "%s is not a good password for %s" % (pwd, uid) 2

secret is not a good password for sa
> userCount = 6
> print "Users connected: %d" % (userCount,) 3 4

Users connected: 6
> print "Users connected: " + userCount 5

Traceback (innermost last):
File "<interactive input>", line 1, in ?

TypeError: cannot concatenate ’str’ and ’int’ objects

1 + is the string concatenation operator.

2 In this trivial case, string formatting accomplishes the same result as concatentation.

3 (userCount,) is a tuple with one element. Yes, the syntax is a little strange, but there’s
a good reason for it: it’s unambiguously a tuple. In fact, you can always include a comma
after the last element when defining a list, tuple, or dictionary, but the comma is required
when defining a tuple with one element. If the comma weren’t required, Python wouldn’t
know whether (userCount) was a tuple with one element or just the value of userCount.

4 String formatting works with integers by specifying %d instead of %s.

5 Trying to concatenate a string with a non-string raises an exception. Unlike string format-
ting, string concatenation works only when everything is already a string.

As with printf in C, string formatting in Python is like a Swiss Army knife. There are options
galore, and modifier strings to specially format many different types of values.

Example 3.23. Formatting Numbers

> print "Today’s stock price: %f" % 50.4625 1

50.462500
> print "Today’s stock price: %.2f" % 50.4625 2

50.46

35

> print "Change since yesterday: %+.2f" % 1.5 3

+1.50

1 The %f string formatting option treats the value as a decimal, and prints it to six decimal
places.

2 The ".2" modifier of the %f option truncates the value to two decimal places.

3 You can even combine modifiers. Adding the + modifier displays a plus or minus sign
before the value. Note that the ".2" modifier is still in place, and is padding the value to
exactly two decimal places.

Further Reading on String Formatting

• Python Library Reference summarizes all the string formatting format characters.

• Effective AWK Programming discusses all the format characters and advanced string for-
matting techniques like specifying width, precision, and zero-padding.

3.6 Mapping Lists

One of the most powerful features of Python is the list comprehension, which
provides a compact way of mapping a list into another list by applying a function
to each of the elements of the list.

Example 3.24. Introducing List Comprehensions

> li = [1, 9, 8, 4]
> [elem*2 for elem in li] 1

[2, 18, 16, 8]
> li 2

[1, 9, 8, 4]
> li = [elem*2 for elem in li] 3

> li
[2, 18, 16, 8]

1 To make sense of this, look at it from right to left. li is the list you’re mapping. Python
loops through li one element at a time, temporarily assigning the value of each element to
the variable elem. Python then applies the function elem*2 and appends that result to the
returned list.

2 Note that list comprehensions do not change the original list.

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

36

3 It is safe to assign the result of a list comprehension to the variable that you’re mapping.
Python constructs the new list in memory, and when the list comprehension is complete, it
assigns the result to the variable.

Here are the list comprehensions in the buildConnectionString function that you declared
in Chapter 2:

["%s=%s" % (k, v) for k, v in params.items()]

First, notice that you’re calling the items function of the params dictionary. This function
returns a list of tuples of all the data in the dictionary.

Example 3.25. The keys, values, and items Functions

> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
> params.keys() 1

[’server’, ’uid’, ’database’, ’pwd’]
> params.values() 2

[’mpilgrim’, ’sa’, ’master’, ’secret’]
> params.items() 3

[(’server’, ’mpilgrim’), (’uid’, ’sa’), (’database’, ’master’), (’pwd’, ’secret’)]

1 The keys method of a dictionary returns a list of all the keys. The list is not in the order in
which the dictionary was defined (remember that elements in a dictionary are unordered),
but it is a list.

2 The values method returns a list of all the values. The list is in the same order as the
list returned by keys, so params.values()[n] == params[params.keys()[n]] for all
values of n.

3 The items method returns a list of tuples of the form (key, value). The list contains all
the data in the dictionary.

Now let’s see what buildConnectionString does. It takes a list, params.items(), and
maps it to a new list by applying string formatting to each element. The new list will have
the same number of elements as params.items(), but each element in the new list will be a
string that contains both a key and its associated value from the params dictionary.

Example 3.26. List Comprehensions in buildConnectionString, Step by Step

> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
> params.items()
[(’server’, ’mpilgrim’), (’uid’, ’sa’), (’database’, ’master’), (’pwd’, ’secret’)]
> [k for k, v in params.items()] 1

[’server’, ’uid’, ’database’, ’pwd’]

37

> [v for k, v in params.items()] 2

[’mpilgrim’, ’sa’, ’master’, ’secret’]
> ["%s=%s" % (k, v) for k, v in params.items()] 3

[’server=mpilgrim’, ’uid=sa’, ’database=master’, ’pwd=secret’]

1 Note that you’re using two variables to iterate through the params.items() list. This
is another use of multi-variable assignment. The first element of params.items() is
(’server’, ’mpilgrim’), so in the first iteration of the list comprehension, k will get
’server’ and v will get ’mpilgrim’. In this case, you’re ignoring the value of v and
only including the value of k in the returned list, so this list comprehension ends up being
equivalent to params.keys().

2 Here you’re doing the same thing, but ignoring the value of k, so this list comprehension
ends up being equivalent to params.values().

3 Combining the previous two examples with some simple string formatting, you get a list
of strings that include both the key and value of each element of the dictionary. This looks
suspiciously like the output of the program. All that remains is to join the elements in this
list into a single string.

Further Reading on List Comprehensions

• Python Tutorial discusses another way to map lists using the built-in map function.

• Python Tutorial shows how to do nested list comprehensions.

3.7 Joining Lists and Splitting Strings

You have a list of key-value pairs in the form key=value, and you want to join
them into a single string. To join any list of strings into a single string, use the
join method of a string object.

Here is an example of joining a list from the buildConnectionString function:

return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

One interesting note before you continue. I keep repeating that functions are objects, strings
are objects... everything is an object. You might have thought I meant that string variables are
objects. But no, look closely at this example and you’ll see that the string ";" itself is an object,
and you are calling its join method.

The join method joins the elements of the list into a single string, with each element separated
by a semi-colon. The delimiter doesn’t need to be a semi-colon; it doesn’t even need to be a
single character. It can be any string.

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

38

You Can’t join Non-Strings
join works only on lists of strings; it does not do any type coercion. Joining a list that has one
or more non-string elements will raise an exception.

Example 3.27. Output of odbchelper.py

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> ["%s=%s" % (k, v) for k, v in params.items()]
[’server=mpilgrim’, ’uid=sa’, ’database=master’, ’pwd=secret’]
>>> ";".join(["%s=%s" % (k, v) for k, v in params.items()])
’server=mpilgrim;uid=sa;database=master;pwd=secret’

This string is then returned from the odbchelper function and printed by the calling block,
which gives you the output that you marveled at when you started reading this chapter.

You’re probably wondering if there’s an analogous method to split a string into a list. And of
course there is, and it’s called split.

Example 3.28. Splitting a String

> li = [’server=mpilgrim’, ’uid=sa’, ’database=master’, ’pwd=secret’]
> s = ";".join(li)
> s
’server=mpilgrim;uid=sa;database=master;pwd=secret’
> s.split(";") 1

[’server=mpilgrim’, ’uid=sa’, ’database=master’, ’pwd=secret’]
> s.split(";", 1) 2

[’server=mpilgrim’, ’uid=sa;database=master;pwd=secret’]

1 split reverses join by splitting a string into a multi-element list. Note that the delimiter
(“;”) is stripped out completely; it does not appear in any of the elements of the returned
list.

2 split takes an optional second argument, which is the number of times to split. (“"Oooooh,
optional arguments...” You’ll learn how to do this in your own functions in the next chap-
ter.)

Searching with split
anystring.split(delimiter, 1) is a useful technique when you want to search a string
for a substring and then work with everything before the substring (which ends up in the first
element of the returned list) and everything after it (which ends up in the second element).

39

Further Reading on String Methods

• Python Knowledge Base answers common questions about strings and has a lot of example
code using strings.

• Python Library Reference summarizes all the string methods.

• Python Library Reference documents the string module.

• The Whole Python FAQ explains why join is a string method instead of a list method.

3.7.1 Historical Note on String Methods

When I first learned Python, I expected join to be a method of a list, which would take the
delimiter as an argument. Many people feel the same way, and there’s a story behind the join
method. Prior to Python 1.6, strings didn’t have all these useful methods. There was a separate
string module that contained all the string functions; each function took a string as its first
argument. The functions were deemed important enough to put onto the strings themselves,
which made sense for functions like lower, upper, and split. But many hard-core Python
programmers objected to the new join method, arguing that it should be a method of the list
instead, or that it shouldn’t move at all but simply stay a part of the old string module (which
still has a lot of useful stuff in it). I use the new join method exclusively, but you will see code
written either way, and if it really bothers you, you can use the old string.join function
instead.

3.8 Summary

The odbchelper.py program and its output should now make perfect sense.

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

Returns string."""
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "__main__":
myParams = {"server":"mpilgrim", \

"database":"master", \
"uid":"sa", \
"pwd":"secret" \
}

print buildConnectionString(myParams)

Here is the output of odbchelper.py:

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

40

server=mpilgrim;uid=sa;database=master;pwd=secret

<highlights> Before diving into the next chapter, make sure you’re comfortable doing all of
these things:

• Using the Python IDE to test expressions interactively

• Writing Python programs and running them from within your IDE, or from the command
line

• Importing modules and calling their functions

• Declaring functions and using doc strings, local variables, and proper indentation

• Defining dictionaries, tuples, and lists

• Accessing attributes and methods of any object, including strings, lists, dictionaries, func-
tions, and modules

• Concatenating values through string formatting

• Mapping lists into other lists using list comprehensions

• Splitting strings into lists and joining lists into strings

</highlights>

41

4 The Power Of Introspection

This chapter covers one of Python’s strengths: introspection. As you know,
everything in Python is an object, and introspection is code looking at other
modules and functions in memory as objects, getting information about them,
and manipulating them. Along the way, you’ll define functions with no name,
call functions with arguments out of order, and reference functions whose names
you don’t even know ahead of time.

4.1 Diving In

Here is a complete, working Python program. You should understand a good
deal about it just by looking at it. The numbered lines illustrate concepts covered
in Chapter 2. Don’t worry if the rest of the code looks intimidating; you’ll learn
all about it throughout this chapter.

Example 4.1. apihelper.py

If you have not already done so, you can download this and other examples used in this book.

def info(object, spacing=10, collapse=1): 1 2 3

"""Print methods and doc strings.

Takes module, class, list, dictionary, or string."""
methodList = [method for method in dir(object) if callable(getattr(object, method))]
processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %

(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))

for method in methodList])

if __name__ == "__main__": 4 5

print info.__doc__

1 This module has one function, info. According to its function declaration, it takes three
parameters: object, spacing, and collapse. The last two are actually optional parame-
ters, as you’ll see shortly.

2 The info function has a multi-line doc string that succinctly describes the function’s pur-
pose. Note that no return value is mentioned; this function will be used solely for its effects,
rather than its value.

3 Code within the function is indented.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

42

4 The if __name__ trick allows this program do something useful when run by itself, with-
out interfering with its use as a module for other programs. In this case, the program simply
prints out the doc string of the info function.

5 if statements use == for comparison, and parentheses are not required.

The info function is designed to be used by you, the programmer, while working in the
Python IDE. It takes any object that has functions or methods (like a module, which has func-
tions, or a list, which has methods) and prints out the functions and their doc strings.

Example 4.2. Sample Usage of apihelper.py

>>> from apihelper import info
>>> li = []
>>> info(li)
append L.append(object) -- append object to end
count L.count(value) -> integer -- return number of occurrences of value
extend L.extend(list) -- extend list by appending list elements
index L.index(value) -> integer -- return index of first occurrence of value
insert L.insert(index, object) -- insert object before index
pop L.pop([index]) -> item -- remove and return item at index (default last)
remove L.remove(value) -- remove first occurrence of value
reverse L.reverse() -- reverse *IN PLACE*
sort L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1

By default the output is formatted to be easy to read. Multi-line doc strings are collapsed
into a single long line, but this option can be changed by specifying 0 for the collapse argu-
ment. If the function names are longer than 10 characters, you can specify a larger value for
the spacing argument to make the output easier to read.

Example 4.3. Advanced Usage of apihelper.py

>>> import odbchelper
>>> info(odbchelper)
buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30)
buildConnectionString Build a connection string from a dictionary Returns
string.
>>> info(odbchelper, 30, 0)
buildConnectionString Build a connection string from a dictionary

Returns string.

43

4.2 Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called
without the argument, the argument gets its default value. Futhermore, argu-
ments can be specified in any order by using named arguments. Stored proce-
dures in SQL Server Transact/SQL can do this, so if you’re a SQL Server scripting
guru, you can skim this part.

Here is an example of info, a function with two optional arguments:

def info(object, spacing=10, collapse=1):

spacing and collapse are optional, because they have default values defined. object is
required, because it has no default value. If info is called with only one argument, spacing
defaults to 10 and collapse defaults to 1. If info is called with two arguments, collapse
still defaults to 1.

Say you want to specify a value for collapse but want to accept the default value for spacing.
In most languages, you would be out of luck, because you would need to call the function with
three arguments. But in Python, arguments can be specified by name, in any order.

Example 4.4. Valid Calls of info

info(odbchelper) 1

info(odbchelper, 12) 2

info(odbchelper, collapse=0) 3

info(spacing=15, object=odbchelper) 4

1 With only one argument, spacing gets its default value of 10 and collapse gets its de-
fault value of 1.

2 With two arguments, collapse gets its default value of 1.

3 Here you are naming the collapse argument explicitly and specifying its value. spacing
still gets its default value of 10.

4 Even required arguments (like object, which has no default value) can be named, and
named arguments can appear in any order.

This looks totally whacked until you realize that arguments are simply a dictionary. The “nor-
mal” method of calling functions without argument names is actually just a shorthand where
Python matches up the values with the argument names in the order they’re specified in the
function declaration. And most of the time, you’ll call functions the “normal” way, but you
always have the additional flexibility if you need it.

44

Calling Functions is Flexible
The only thing you need to do to call a function is specify a value (somehow) for each required
argument; the manner and order in which you do that is up to you.

Further Reading on Optional Arguments

• Python Tutorial discusses exactly when and how default arguments are evaluated, which
matters when the default value is a list or an expression with side effects.

4.3 Using type, str, dir, and Other Built-In Functions

Python has a small set of extremely useful built-in functions. All other functions
are partitioned off into modules. This was actually a conscious design decision,
to keep the core language from getting bloated like other scripting languages
(cough cough, Visual Basic).

4.3.1 The type Function

The type function returns the datatype of any arbitrary object. The possible types are listed in
the types module. This is useful for helper functions that can handle several types of data.

Example 4.5. Introducing type

> type(1) 1

<type ’int’>
> li = []
> type(li) 2

<type ’list’>
> import odbchelper
> type(odbchelper) 3

<type ’module’>
> import types 4

> type(odbchelper) == types.ModuleType
True

1 type takes anything -- and I mean anything -- and returns its datatype. Integers, strings,
lists, dictionaries, tuples, functions, classes, modules, even types are acceptable.

2 type can take a variable and return its datatype.

3 type also works on modules.

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

45

4 You can use the constants in the types module to compare types of objects. This is what
the info function does, as you’ll see shortly.

4.3.2 The str Function

The str coerces data into a string. Every datatype can be coerced into a string.

Example 4.6. Introducing str

> str(1) 1

’1’
> horsemen = [’war’, ’pestilence’, ’famine’]
> horsemen
[’war’, ’pestilence’, ’famine’]
> horsemen.append(’Powerbuilder’)
> str(horsemen) 2

"[’war’, ’pestilence’, ’famine’, ’Powerbuilder’]"
> str(odbchelper) 3

"<module ’odbchelper’ from ’c:\\docbook\\dip\\py\\odbchelper.py’>"
> str(None) 4

’None’

1 For simple datatypes like integers, you would expect str to work, because almost every
language has a function to convert an integer to a string.

2 However, str works on any object of any type. Here it works on a list which you’ve
constructed in bits and pieces.

3 str also works on modules. Note that the string representation of the module includes
the pathname of the module on disk, so yours will be different.

4 A subtle but important behavior of str is that it works on None, the Python null value. It
returns the string ’None’. You’ll use this to your advantage in the info function, as you’ll
see shortly.

At the heart of the info function is the powerful dir function. dir returns a list of the attrib-
utes and methods of any object: modules, functions, strings, lists, dictionaries... pretty much
anything.

Example 4.7. Introducing dir

> li = []
> dir(li) 1

[’append’, ’count’, ’extend’, ’index’, ’insert’,
’pop’, ’remove’, ’reverse’, ’sort’]

46

> d = {}
> dir(d) 2

[’clear’, ’copy’, ’get’, ’has_key’, ’items’, ’keys’, ’setdefault’, ’update’, ’values’]
> import odbchelper
> dir(odbchelper) 3

[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’buildConnectionString’]

1 li is a list, so dir(li) returns a list of all the methods of a list. Note that the returned list
contains the names of the methods as strings, not the methods themselves.

2 d is a dictionary, so dir(d) returns a list of the names of dictionary methods. At least one
of these, keys, should look familiar.

3 This is where it really gets interesting. odbchelper is a module, so dir(odbchelper)
returns a list of all kinds of stuff defined in the module, including built-in attributes, like
__name__, __doc__, and whatever other attributes and methods you define. In this case,
odbchelper has only one user-defined method, the buildConnectionString function
described in Chapter 2.

Finally, the callable function takes any object and returns True if the object can be called, or
False otherwise. Callable objects include functions, class methods, even classes themselves.
(More on classes in the next chapter.)

Example 4.8. Introducing callable

> import string
> string.punctuation 1

’!"#$%&\’()*+,-./:;<=>?@[\\]^_‘{|}~’
> string.join 2

<function join at 00C55A7C>
> callable(string.punctuation) 3

False
> callable(string.join) 4

True
> print string.join.__doc__ 5

join(list [,sep]) -> string

Return a string composed of the words in list, with
intervening occurrences of sep. The default separator is a
single space.

(joinfields and join are synonymous)

1 The functions in the string module are deprecated (although many people still use the
join function), but the module contains a lot of useful constants like this string.punctuation,
which contains all the standard punctuation characters.

47

2 string.join is a function that joins a list of strings.

3 string.punctuation is not callable; it is a string. (A string does have callable methods,
but the string itself is not callable.)

4 string.join is callable; it’s a function that takes two arguments.

5 Any callable object may have a doc string. By using the callable function on each of
an object’s attributes, you can determine which attributes you care about (methods, func-
tions, classes) and which you want to ignore (constants and so on) without knowing any-
thing about the object ahead of time.

4.3.3 Built-In Functions

type, str, dir, and all the rest of Python’s built-in functions are grouped into a special module
called __builtin__. (That’s two underscores before and after.) If it helps, you can think of
Python automatically executing from __builtin__ import * on startup, which imports all
the “built-in” functions into the namespace so you can use them directly.

The advantage of thinking like this is that you can access all the built-in functions and attrib-
utes as a group by getting information about the __builtin__ module. And guess what,
Python has a function called info. Try it yourself and skim through the list now. We’ll
dive into some of the more important functions later. (Some of the built-in error classes, like
AttributeError, should already look familiar.)

Example 4.9. Built-in Attributes and Functions

>>> from apihelper import info
>>> import __builtin__
>>> info(__builtin__, 20)
ArithmeticError Base class for arithmetic errors.
AssertionError Assertion failed.
AttributeError Attribute not found.
EOFError Read beyond end of file.
EnvironmentError Base class for I/O related errors.
Exception Common base class for all exceptions.
FloatingPointError Floating point operation failed.
IOError I/O operation failed.

[...snip...]

Python is self-documenting
Python comes with excellent reference manuals, which you should peruse thoroughly to learn
all the modules Python has to offer. But unlike most languages, where you would find yourself

48

referring back to the manuals or man pages to remind yourself how to use these modules,
Python is largely self-documenting.

Further Reading on Built-In Functions

• Python Library Reference documents all the built-in functions and all the built-in exceptions.

4.4 Getting Object References With getattr

You already know that Python functions are objects. What you don’t know is
that you can get a reference to a function without knowing its name until run-
time, by using the getattr function.

Example 4.10. Introducing getattr

> li = ["Larry", "Curly"]
> li.pop 1

<built-in method pop of list object at 010DF884>
> getattr(li, "pop") 2

<built-in method pop of list object at 010DF884>
> getattr(li, "append")("Moe") 3

> li
["Larry", "Curly", "Moe"]
> getattr({}, "clear") 4

<built-in method clear of dictionary object at 00F113D4>
> getattr((), "pop") 5

Traceback (innermost last):
File "<interactive input>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’pop’

1 This gets a reference to the pop method of the list. Note that this is not calling the pop
method; that would be li.pop(). This is the method itself.

2 This also returns a reference to the pop method, but this time, the method name is specified
as a string argument to the getattr function. getattr is an incredibly useful built-in
function that returns any attribute of any object. In this case, the object is a list, and the
attribute is the pop method.

3 In case it hasn’t sunk in just how incredibly useful this is, try this: the return value of
getattr is the method, which you can then call just as if you had said li.append("Moe")
directly. But you didn’t call the function directly; you specified the function name as a string
instead.

4 getattr also works on dictionaries.

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/module-exceptions.html

49

5 In theory, getattr would work on tuples, except that tuples have no methods, so getattr
will raise an exception no matter what attribute name you give.

4.4.1 getattr with Modules

getattr isn’t just for built-in datatypes. It also works on modules.

Example 4.11. The getattr Function in apihelper.py

> import odbchelper
> odbchelper.buildConnectionString 1

<function buildConnectionString at 00D18DD4>
> getattr(odbchelper, "buildConnectionString") 2

<function buildConnectionString at 00D18DD4>
> object = odbchelper
> method = "buildConnectionString"
> getattr(object, method) 3

<function buildConnectionString at 00D18DD4>
> type(getattr(object, method)) 4

<type ’function’>
> import types
> type(getattr(object, method)) == types.FunctionType
True
> callable(getattr(object, method)) 5

True

1 This returns a reference to the buildConnectionString function in the odbchelper
module, which you studied in Chapter 2. (The hex address you see is specific to my ma-
chine; your output will be different.)

2 Using getattr, you can get the same reference to the same function. In general, getattr(object,
"attribute") is equivalent to object.attribute. If object is a module, then at-
tribute can be anything defined in the module: a function, class, or global variable.

3 And this is what you actually use in the info function. object is passed into the function
as an argument; method is a string which is the name of a method or function.

4 In this case, method is the name of a function, which you can prove by getting its type.

5 Since method is a function, it is callable.

4.4.2 getattr As a Dispatcher

A common usage pattern of getattr is as a dispatcher. For example, if you had a program
that could output data in a variety of different formats, you could define separate functions for
each output format and use a single dispatch function to call the right one.

50

For example, let’s imagine a program that prints site statistics in HTML, XML, and plain text
formats. The choice of output format could be specified on the command line, or stored in a
configuration file. A statsout module defines three functions, output_html, output_xml,
and output_text. Then the main program defines a single output function, like this:

Example 4.12. Creating a Dispatcher with getattr

import statsout

def output(data, format="text"): 1

output_function = getattr(statsout, "output_%s" % format) 2

return output_function(data) 3

1 The output function takes one required argument, data, and one optional argument,
format. If format is not specified, it defaults to text, and you will end up calling the
plain text output function.

2 You concatenate the format argument with "output_" to produce a function name, and
then go get that function from the statsout module. This allows you to easily extend the
program later to support other output formats, without changing this dispatch function.
Just add another function to statsout named, for instance, output_pdf, and pass "pdf"
as the format into the output function.

3 Now you can simply call the output function in the same way as any other function. The
output_function variable is a reference to the appropriate function from the statsout
module.

Did you see the bug in the previous example? This is a very loose coupling of strings and
functions, and there is no error checking. What happens if the user passes in a format that
doesn’t have a corresponding function defined in statsout? Well, getattr will return None,
which will be assigned to output_function instead of a valid function, and the next line that
attempts to call that function will crash and raise an exception. That’s bad.

Luckily, getattr takes an optional third argument, a default value.

Example 4.13. getattr Default Values

import statsout

def output(data, format="text"):
output_function = getattr(statsout, "output_%s" % format, statsout.output_text)
return output_function(data) 1

51

1 This function call is guaranteed to work, because you added a third argument to the call to
getattr. The third argument is a default value that is returned if the attribute or method
specified by the second argument wasn’t found.

As you can see, getattr is quite powerful. It is the heart of introspection, and you’ll see even
more powerful examples of it in later chapters.

4.5 Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists,
via list comprehensions (Section 3.6). This can be combined with a filtering
mechanism, where some elements in the list are mapped while others are skipped
entirely.

Here is the list filtering syntax:

[mapping-expression for element in source-list if filter-expression]

This is an extension of the list comprehensions that you know and love. The first two thirds
are the same; the last part, starting with the if, is the filter expression. A filter expression can
be any expression that evaluates true or false (which in Python can be almost anything). Any
element for which the filter expression evaluates true will be included in the mapping. All
other elements are ignored, so they are never put through the mapping expression and are not
included in the output list.

Example 4.14. Introducing List Filtering

> li = ["a", "mpilgrim", "foo", "b", "c", "b", "d", "d"]
> [elem for elem in li if len(elem) > 1] 1

[’mpilgrim’, ’foo’]
> [elem for elem in li if elem != "b"] 2

[’a’, ’mpilgrim’, ’foo’, ’c’, ’d’, ’d’]
> [elem for elem in li if li.count(elem) == 1] 3

[’a’, ’mpilgrim’, ’foo’, ’c’]

1 The mapping expression here is simple (it just returns the value of each element), so con-
centrate on the filter expression. As Python loops through the list, it runs each element
through the filter expression. If the filter expression is true, the element is mapped and the
result of the mapping expression is included in the returned list. Here, you are filtering out
all the one-character strings, so you’re left with a list of all the longer strings.

2 Here, you are filtering out a specific value, b. Note that this filters all occurrences of b,
since each time it comes up, the filter expression will be false.

52

3 count is a list method that returns the number of times a value occurs in a list. You
might think that this filter would eliminate duplicates from a list, returning a list containing
only one copy of each value in the original list. But it doesn’t, because values that appear
twice in the original list (in this case, b and d) are excluded completely. There are ways of
eliminating duplicates from a list, but filtering is not the solution.

Let’s get back to this line from apihelper.py:

methodList = [method for method in dir(object) if callable(getattr(object, method))]

This looks complicated, and it is complicated, but the basic structure is the same. The whole
filter expression returns a list, which is assigned to the methodList variable. The first half
of the expression is the list mapping part. The mapping expression is an identity expression,
which it returns the value of each element. dir(object) returns a list of object’s attributes
and methods -- that’s the list you’re mapping. So the only new part is the filter expression after
the if.

The filter expression looks scary, but it’s not. You already know about callable, getattr, and
in. As you saw in the previous section, the expression getattr(object, method) returns a
function object if object is a module and method is the name of a function in that module.

So this expression takes an object (named object). Then it gets a list of the names of the
object’s attributes, methods, functions, and a few other things. Then it filters that list to weed
out all the stuff that you don’t care about. You do the weeding out by taking the name of each
attribute/method/function and getting a reference to the real thing, via the getattr function.
Then you check to see if that object is callable, which will be any methods and functions, both
built-in (like the pop method of a list) and user-defined (like the buildConnectionString
function of the odbchelper module). You don’t care about other attributes, like the __name__
attribute that’s built in to every module.

Further Reading on Filtering Lists

• Python Tutorial discusses another way to filter lists using the built-in filter function.

4.6 The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do
not return boolean values; instead, they return one of the actual values they are
comparing.

Example 4.15. Introducing and

> ’a’ and ’b’ 1

’b’

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

53

> ’’ and ’b’ 2

’’
> ’a’ and ’b’ and ’c’ 3

’c’

1 When using and, values are evaluated in a boolean context from left to right. 0, ’’, [], (),
{}, and None are false in a boolean context; everything else is true. Well, almost everything.
By default, instances of classes are true in a boolean context, but you can define special
methods in your class to make an instance evaluate to false. You’ll learn all about classes
and special methods in Chapter 5. If all values are true in a boolean context, and returns
the last value. In this case, and evaluates ’a’, which is true, then ’b’, which is true, and
returns ’b’.

2 If any value is false in a boolean context, and returns the first false value. In this case, ’’
is the first false value.

3 All values are true, so and returns the last value, ’c’.

Example 4.16. Introducing or

> ’a’ or ’b’ 1

’a’
> ’’ or ’b’ 2

’b’
> ’’ or [] or {} 3

{}
> def sidefx():
... print "in sidefx()"
... return 1
> ’a’ or sidefx() 4

’a’

1 When using or, values are evaluated in a boolean context from left to right, just like and.
If any value is true, or returns that value immediately. In this case, ’a’ is the first true
value.

2 or evaluates ’’, which is false, then ’b’, which is true, and returns ’b’.

3 If all values are false, or returns the last value. or evaluates ’’, which is false, then [],
which is false, then {}, which is false, and returns {}.

4 Note that or evaluates values only until it finds one that is true in a boolean context, and
then it ignores the rest. This distinction is important if some values can have side effects.
Here, the function sidefx is never called, because or evaluates ’a’, which is true, and
returns ’a’ immediately.

54

If you’re a C hacker, you are certainly familiar with the bool ? a : b expression, which
evaluates to a if bool is true, and b otherwise. Because of the way and and or work in Python,
you can accomplish the same thing.

4.6.1 Using the and-or Trick

Example 4.17. Introducing the and-or Trick

> a = "first"
> b = "second"
> 1 and a or b 1

’first’
> 0 and a or b 2

’second’

1 This syntax looks similar to the bool ? a : b expression in C. The entire expression
is evaluated from left to right, so the and is evaluated first. 1 and ’first’ evalutes to
’first’, then ’first’ or ’second’ evalutes to ’first’.

2 0 and ’first’ evalutes to False, and then 0 or ’second’ evaluates to ’second’.

However, since this Python expression is simply boolean logic, and not a special construct of
the language, there is one extremely important difference between this and-or trick in Python
and the bool ? a : b syntax in C. If the value of a is false, the expression will not work as
you would expect it to. (Can you tell I was bitten by this? More than once?)

Example 4.18. When the and-or Trick Fails

> a = ""
> b = "second"
> 1 and a or b 1

’second’

1 Since a is an empty string, which Python considers false in a boolean context, 1 and ’’
evalutes to ’’, and then ’’ or ’second’ evalutes to ’second’. Oops! That’s not what
you wanted.

The and-or trick, bool and a or b, will not work like the C expression bool ? a : b
when a is false in a boolean context.

55

The real trick behind the and-or trick, then, is to make sure that the value of a is never false.
One common way of doing this is to turn a into [a] and b into [b], then taking the first
element of the returned list, which will be either a or b.

Example 4.19. Using the and-or Trick Safely

> a = ""
> b = "second"
> (1 and [a] or [b])[0] 1

’’

1 Since [a] is a non-empty list, it is never false. Even if a is 0 or ’’ or some other false
value, the list [a] is true because it has one element.

By now, this trick may seem like more trouble than it’s worth. You could, after all, accomplish
the same thing with an if statement, so why go through all this fuss? Well, in many cases, you
are choosing between two constant values, so you can use the simpler syntax and not worry,
because you know that the a value will always be true. And even if you need to use the more
complicated safe form, there are good reasons to do so. For example, there are some cases in
Python where if statements are not allowed, such as in lambda functions.

Further Reading on the and-or Trick

• Python Cookbook discusses alternatives to the and-or trick.

4.7 Using lambda Functions

Python supports an interesting syntax that lets you define one-line mini-functions
on the fly. Borrowed from Lisp, these so-called lambda functions can be used
anywhere a function is required.

Example 4.20. Introducing lambda Functions

> def f(x):
... return x*2
...
> f(3)
6
> g = lambda x: x*2 1

> g(3)
6
> (lambda x: x*2)(3) 2

6

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

56

1 This is a lambda function that accomplishes the same thing as the normal function above
it. Note the abbreviated syntax here: there are no parentheses around the argument list,
and the return keyword is missing (it is implied, since the entire function can only be one
expression). Also, the function has no name, but it can be called through the variable it is
assigned to.

2 You can use a lambda function without even assigning it to a variable. This may not be
the most useful thing in the world, but it just goes to show that a lambda is just an in-line
function.

To generalize, a lambda function is a function that takes any number of arguments (including
optional arguments) and returns the value of a single expression. lambda functions can not
contain commands, and they can not contain more than one expression. Don’t try to squeeze
too much into a lambda function; if you need something more complex, define a normal func-
tion instead and make it as long as you want.

lambda is Optional
lambda functions are a matter of style. Using them is never required; anywhere you could use
them, you could define a separate normal function and use that instead. I use them in places
where I want to encapsulate specific, non-reusable code without littering my code with a lot of
little one-line functions.

4.7.1 Real-World lambda Functions

Here are the lambda functions in apihelper.py:

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)

Notice that this uses the simple form of the and-or trick, which is okay, because a lambda
function is always true in a boolean context. (That doesn’t mean that a lambda function can’t
return a false value. The function is always true; its return value could be anything.)

Also notice that you’re using the split function with no arguments. You’ve already seen it
used with one or two arguments, but without any arguments it splits on whitespace.

Example 4.21. split With No Arguments

> s = "this is\na\ttest" 1

> print s
this is
a test
> print s.split() 2

[’this’, ’is’, ’a’, ’test’]

57

> print " ".join(s.split()) 3

’this is a test’

1 This is a multiline string, defined by escape characters instead of triple quotes. \n is a
carriage return, and \t is a tab character.

2 split without any arguments splits on whitespace. So three spaces, a carriage return,
and a tab character are all the same.

3 You can normalize whitespace by splitting a string with split and then rejoining it with
join, using a single space as a delimiter. This is what the info function does to collapse
multi-line doc strings into a single line.

So what is the info function actually doing with these lambda functions, splits, and and-or
tricks?

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)

processFunc is now a function, but which function it is depends on the value of the collapse
variable. If collapse is true, processFunc(string) will collapse whitespace; otherwise,
processFunc(string) will return its argument unchanged.

To do this in a less robust language, like Visual Basic, you would probably create a function that
took a string and a collapse argument and used an if statement to decide whether to collapse
the whitespace or not, then returned the appropriate value. This would be inefficient, because
the function would need to handle every possible case. Every time you called it, it would
need to decide whether to collapse whitespace before it could give you what you wanted. In
Python, you can take that decision logic out of the function and define a lambda function that
is custom-tailored to give you exactly (and only) what you want. This is more efficient, more
elegant, and less prone to those nasty oh-I-thought-those-arguments-were-reversed kinds of
errors.

Further Reading on lambda Functions

• Python Knowledge Base discusses using lambda to call functions indirectly.

• Python Tutorial shows how to access outside variables from inside a lambda function.
(PEP 227 explains how this will change in future versions of Python.)

• The Whole Python FAQ has examples of obfuscated one-liners using lambda.

4.8 Putting It All Together
The last line of code, the only one you haven’t deconstructed yet, is the one that
does all the work. But by now the work is easy, because everything you need is

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search

58

already set up just the way you need it. All the dominoes are in place; it’s time
to knock them down.

This is the meat of apihelper.py:

print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))

for method in methodList])

Note that this is one command, split over multiple lines, but it doesn’t use the line continuation
character (\). Remember when I said that some expressions can be split into multiple lines
without using a backslash? A list comprehension is one of those expressions, since the entire
expression is contained in square brackets.

Now, let’s take it from the end and work backwards. The

for method in methodList

shows that this is a list comprehension. As you know, methodList is a list of all the methods
you care about in object. So you’re looping through that list with method.

Example 4.22. Getting a doc string Dynamically

> import odbchelper
> object = odbchelper 1

> method = ’buildConnectionString’ 2

> getattr(object, method) 3

<function buildConnectionString at 010D6D74>
> print getattr(object, method).__doc__ 4

Build a connection string from a dictionary of parameters.

Returns string.

1 In the info function, object is the object you’re getting help on, passed in as an argu-
ment.

2 As you’re looping through methodList, method is the name of the current method.

3 Using the getattr function, you’re getting a reference to the method function in the object
module.

4 Now, printing the actual doc string of the method is easy.

The next piece of the puzzle is the use of str around the doc string. As you may recall, str
is a built-in function that coerces data into a string. But a doc string is always a string, so

59

why bother with the str function? The answer is that not every function has a doc string,
and if it doesn’t, its __doc__ attribute is None.

Example 4.23. Why Use str on a doc string?

> > def foo(): print 2
> > foo()
2
> > foo.__doc__ 1

> foo.__doc__ == None 2

True
> str(foo.__doc__) 3

’None’

1 You can easily define a function that has no doc string, so its __doc__ attribute is None.
Confusingly, if you evaluate the __doc__ attribute directly, the Python IDE prints nothing
at all, which makes sense if you think about it, but is still unhelpful.

2 You can verify that the value of the __doc__ attribute is actually None by comparing it
directly.

3 The str function takes the null value and returns a string representation of it, ’None’.

Python vs. SQL: null value comparisons
In SQL, you must use IS NULL instead of = NULL to compare a null value. In Python, you can
use either == None or is None, but is None is faster.

Now that you are guaranteed to have a string, you can pass the string to processFunc, which
you have already defined as a function that either does or doesn’t collapse whitespace. Now
you see why it was important to use str to convert a None value into a string representation.
processFunc is assuming a string argument and calling its split method, which would crash
if you passed it None because None doesn’t have a split method.

Stepping back even further, you see that you’re using string formatting again to concatenate
the return value of processFunc with the return value of method’s ljust method. This is a
new string method that you haven’t seen before.

Example 4.24. Introducing ljust

> s = ’buildConnectionString’
> s.ljust(30) 1

’buildConnectionString ’
> s.ljust(20) 2

’buildConnectionString’

60

1 ljust pads the string with spaces to the given length. This is what the info function uses
to make two columns of output and line up all the doc strings in the second column.

2 If the given length is smaller than the length of the string, ljust will simply return the
string unchanged. It never truncates the string.

You’re almost finished. Given the padded method name from the ljust method and the
(possibly collapsed) doc string from the call to processFunc, you concatenate the two and
get a single string. Since you’re mapping methodList, you end up with a list of strings. Using
the join method of the string "\n", you join this list into a single string, with each element of
the list on a separate line, and print the result.

Example 4.25. Printing a List

> li = [’a’, ’b’, ’c’]
> print "\n".join(li) 1

a
b
c

1 This is also a useful debugging trick when you’re working with lists. And in Python,
you’re always working with lists.

That’s the last piece of the puzzle. You should now understand this code.

print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))

for method in methodList])

4.9 Summary

The apihelper.py program and its output should now make perfect sense.

def info(object, spacing=10, collapse=1):
"""Print methods and doc strings.

Takes module, class, list, dictionary, or string."""
methodList = [method for method in dir(object) if callable(getattr(object, method))]
processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %

(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))

for method in methodList])

61

if __name__ == "__main__":
print info.__doc__

Here is the output of apihelper.py:

>>> from apihelper import info
>>> li = []
>>> info(li)
append L.append(object) -- append object to end
count L.count(value) -> integer -- return number of occurrences of value
extend L.extend(list) -- extend list by appending list elements
index L.index(value) -> integer -- return index of first occurrence of value
insert L.insert(index, object) -- insert object before index
pop L.pop([index]) -> item -- remove and return item at index (default last)
remove L.remove(value) -- remove first occurrence of value
reverse L.reverse() -- reverse *IN PLACE*
sort L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1

<highlights> Before diving into the next chapter, make sure you’re comfortable doing all of
these things:

• Defining and calling functions with optional and named arguments

• Using str to coerce any arbitrary value into a string representation

• Using getattr to get references to functions and other attributes dynamically

• Extending the list comprehension syntax to do list filtering

• Recognizing the and-or trick and using it safely

• Defining lambda functions

• Assigning functions to variables and calling the function by referencing the variable. I
can’t emphasize this enough, because this mode of thought is vital to advancing your un-
derstanding of Python. You’ll see more complex applications of this concept throughout
this book.

</highlights>

62

5 Objects and Object-Orientation

This chapter, and pretty much every chapter after this, deals with object-oriented
Python programming.

5.1 Diving In

Here is a complete, working Python program. Read the doc strings of the mod-
ule, the classes, and the functions to get an overview of what this program does
and how it works. As usual, don’t worry about the stuff you don’t understand;
that’s what the rest of the chapter is for.

Example 5.1. fileinfo.py

If you have not already done so, you can download this and other examples used in this book.

"""Framework for getting filetype-specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key-value pairs for each piece of metadata.

import fileinfo
info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")
print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):

...

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.
"""
import os
import sys
from UserDict import UserDict

def stripnulls(data):
"strip whitespace and nulls"
return data.replace("\00", "").strip()

class FileInfo(UserDict):
"store file metadata"
def __init__(self, filename=None):

UserDict.__init__(self)
self["name"] = filename

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

63

class MP3FileInfo(FileInfo):
"store ID3v1.0 MP3 tags"
tagDataMap = {"title" : (3, 33, stripnulls),

"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

def __parse(self, filename):
"parse ID3v1.0 tags from MP3 file"
self.clear()
try:

fsock = open(filename, "rb", 0)
try:

fsock.seek(-128, 2)
tagdata = fsock.read(128)

finally:
fsock.close()

if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items():

self[tag] = parseFunc(tagdata[start:end])
except IOError:

pass

def __setitem__(self, key, item):
if key == "name" and item:

self.__parse(item)
FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)

for f in os.listdir(directory)]
fileList = [os.path.join(directory, f)

for f in fileList
if os.path.splitext(f)[1] in fileExtList]

def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or FileInfo

return [getFileInfoClass(f)(f) for f in fileList]

if __name__ == "__main__":
for info in listDirectory("/music/_singles/", [".mp3"]): 1

print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
print

64

1 This program’s output depends on the files on your hard drive. To get meaningful output,
you’ll need to change the directory path to point to a directory of MP3 files on your own
machine.

This is the output I got on my machine. Your output will be different, unless, by some startling
coincidence, you share my exact taste in music.

album=
artist=Ghost in the Machine
title=A Time Long Forgotten (Concept
genre=31
name=/music/_singles/a_time_long_forgotten_con.mp3
year=1999
comment=http://mp3.com/ghostmachine

album=Rave Mix
artist=***DJ MARY-JANE***
title=HELLRAISER****Trance from Hell
genre=31
name=/music/_singles/hellraiser.mp3
year=2000
comment=http://mp3.com/DJMARYJANE

album=Rave Mix
artist=***DJ MARY-JANE***
title=KAIRO****THE BEST GOA
genre=31
name=/music/_singles/kairo.mp3
year=2000
comment=http://mp3.com/DJMARYJANE

album=Journeys
artist=Masters of Balance
title=Long Way Home
genre=31
name=/music/_singles/long_way_home1.mp3
year=2000
comment=http://mp3.com/MastersofBalan

album=
artist=The Cynic Project
title=Sidewinder
genre=18
name=/music/_singles/sidewinder.mp3
year=2000
comment=http://mp3.com/cynicproject

album=Digitosis@128k
artist=VXpanded

65

title=Spinning
genre=255
name=/music/_singles/spinning.mp3
year=2000
comment=http://mp3.com/artists/95/vxp

5.2 Importing Modules Using from module import
Python has two ways of importing modules. Both are useful, and you should
know when to use each. One way, import module, you’ve already seen in
Section 2.4. The other way accomplishes the same thing, but it has subtle and
important differences.

Here is the basic from module import syntax:

from UserDict import UserDict

This is similar to the import module syntax that you know and love, but with an important
difference: the attributes and methods of the imported module types are imported directly
into the local namespace, so they are available directly, without qualification by module name.
You can import individual items or use from module import * to import everything.

Python vs. Perl: from module import
from module import * in Python is like use module in Perl; import module in Python is
like require module in Perl.

Python vs. Java: from module import
from module import * in Python is like import module.* in Java; import module in
Python is like import module in Java.

Example 5.2. import module vs. from module import

> import types
> types.FunctionType 1

<type ’function’>
> FunctionType 2

Traceback (innermost last):
File "<interactive input>", line 1, in ?

NameError: There is no variable named ’FunctionType’
> from types import FunctionType 3

> FunctionType 4

<type ’function’>

66

1 The types module contains no methods; it just has attributes for each Python object type.
Note that the attribute, FunctionType, must be qualified by the module name, types.

2 FunctionType by itself has not been defined in this namespace; it exists only in the con-
text of types.

3 This syntax imports the attribute FunctionType from the types module directly into the
local namespace.

4 Now FunctionType can be accessed directly, without reference to types.

When should you use from module import?

• If you will be accessing attributes and methods often and don’t want to type the module
name over and over, use from module import.

• If you want to selectively import some attributes and methods but not others, use from
module import.

• If the module contains attributes or functions with the same name as ones in your module,
you must use import module to avoid name conflicts.

Other than that, it’s just a matter of style, and you will see Python code written both ways.

Use from module import * sparingly, because it makes it difficult to determine where a
particular function or attribute came from, and that makes debugging and refactoring more
difficult.

Further Reading on Module Importing Techniques

• eff-bot has more to say on import module vs. from module import.

• Python Tutorial discusses advanced import techniques, including from module import *.

5.3 Defining Classes

Python is fully object-oriented: you can define your own classes, inherit from
your own or built-in classes, and instantiate the classes you’ve defined.

Defining a class in Python is simple. As with functions, there is no separate interface definition.
Just define the class and start coding. A Python class starts with the reserved word class,

http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.effbot.org/guides/import-confusion.htm
http://www.effbot.org/guides/import-confusion.htm
http://www.effbot.org/guides/import-confusion.htm
http://www.effbot.org/guides/import-confusion.htm
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000

67

followed by the class name. Technically, that’s all that’s required, since a class doesn’t need to
inherit from any other class.

Example 5.3. The Simplest Python Class

class Loaf: 1

pass 2 3

1 The name of this class is Loaf, and it doesn’t inherit from any other class. Class names are
usually capitalized, EachWordLikeThis, but this is only a convention, not a requirement.

2 This class doesn’t define any methods or attributes, but syntactically, there needs to be
something in the definition, so you use pass. This is a Python reserved word that just
means “move along, nothing to see here”. It’s a statement that does nothing, and it’s a
good placeholder when you’re stubbing out functions or classes.

3 You probably guessed this, but everything in a class is indented, just like the code within
a function, if statement, for loop, and so forth. The first thing not indented is not in the
class.

Python vs. Java: pass
The pass statement in Python is like an empty set of braces ({}) in Java or C.

Of course, realistically, most classes will be inherited from other classes, and they will define
their own class methods and attributes. But as you’ve just seen, there is nothing that a class
absolutely must have, other than a name. In particular, C++ programmers may find it odd
that Python classes don’t have explicit constructors and destructors. Python classes do have
something similar to a constructor: the __init__ method.

Example 5.4. Defining the FileInfo Class

from UserDict import UserDict

class FileInfo(UserDict): 1

1 In Python, the ancestor of a class is simply listed in parentheses immediately after the class
name. So the FileInfo class is inherited from the UserDict class (which was imported
from the UserDict module). UserDict is a class that acts like a dictionary, allowing you to
essentially subclass the dictionary datatype and add your own behavior. (There are similar
classes UserList and UserString which allow you to subclass lists and strings.) There is
a bit of black magic behind this, which you will demystify later in this chapter when you
explore the UserDict class in more depth.

68

Python vs. Java: Ancestors
In Python, the ancestor of a class is simply listed in parentheses immediately after the class
name. There is no special keyword like extends in Java.

Python supports multiple inheritance. In the parentheses following the class name, you can
list as many ancestor classes as you like, separated by commas.

5.3.1 Initializing and Coding Classes

This example shows the initialization of the FileInfo class using the __init__ method.

Example 5.5. Initializing the FileInfo Class

class FileInfo(UserDict):
"store file metadata" 1

def __init__(self, filename=None): 2 3 4

1 Classes can (and should) have doc strings too, just like modules and functions.

2 __init__ is called immediately after an instance of the class is created. It would be tempt-
ing but incorrect to call this the constructor of the class. It’s tempting, because it looks like
a constructor (by convention, __init__ is the first method defined for the class), acts like
one (it’s the first piece of code executed in a newly created instance of the class), and even
sounds like one (“init” certainly suggests a constructor-ish nature). Incorrect, because the
object has already been constructed by the time __init__ is called, and you already have
a valid reference to the new instance of the class. But __init__ is the closest thing you’re
going to get to a constructor in Python, and it fills much the same role.

3 The first argument of every class method, including __init__, is always a reference to the
current instance of the class. By convention, this argument is always named self. In the
__init__ method, self refers to the newly created object; in other class methods, it refers
to the instance whose method was called. Although you need to specify self explicitly
when defining the method, you do not specify it when calling the method; Python will add
it for you automatically.

4 __init__ methods can take any number of arguments, and just like functions, the argu-
ments can be defined with default values, making them optional to the caller. In this case,
filename has a default value of None, which is the Python null value.

69

Python vs. Java: self
By convention, the first argument of any Python class method (the reference to the current
instance) is called self. This argument fills the role of the reserved word this in C++ or Java,
but self is not a reserved word in Python, merely a naming convention. Nonetheless, please
don’t call it anything but self; this is a very strong convention.

Example 5.6. Coding the FileInfo Class

class FileInfo(UserDict):
"store file metadata"
def __init__(self, filename=None):

UserDict.__init__(self) 1

self["name"] = filename 2

3

1 Some pseudo-object-oriented languages like Powerbuilder have a concept of “extend-
ing” constructors and other events, where the ancestor’s method is called automatically
before the descendant’s method is executed. Python does not do this; you must always
explicitly call the appropriate method in the ancestor class.

2 I told you that this class acts like a dictionary, and here is the first sign of it. You’re assign-
ing the argument filename as the value of this object’s name key.

3 Note that the __init__ method never returns a value.

5.3.2 Knowing When to Use self and __init__

When defining your class methods, you must explicitly list self as the first argument for
each method, including __init__. When you call a method of an ancestor class from within
your class, you must include the self argument. But when you call your class method from
outside, you do not specify anything for the self argument; you skip it entirely, and Python
automatically adds the instance reference for you. I am aware that this is confusing at first;
it’s not really inconsistent, but it may appear inconsistent because it relies on a distinction
(between bound and unbound methods) that you don’t know about yet.

Whew. I realize that’s a lot to absorb, but you’ll get the hang of it. All Python classes work
the same way, so once you learn one, you’ve learned them all. If you forget everything else,
remember this one thing, because I promise it will trip you up:

__init__ Methods

70

__init__ methods are optional, but when you define one, you must remember to explicitly
call the ancestor’s __init__ method (if it defines one). This is more generally true: when-
ever a descendant wants to extend the behavior of the ancestor, the descendant method must
explicitly call the ancestor method at the proper time, with the proper arguments.

Further Reading on Python Classes

• Learning to Program has a gentler introduction to classes.

• How to Think Like a Computer Scientist shows how to use classes to model compound
datatypes.

• Python Tutorial has an in-depth look at classes, namespaces, and inheritance.

• Python Knowledge Base answers common questions about classes.

5.4 Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply
call the class as if it were a function, passing the arguments that the __init__
method defines. The return value will be the newly created object.

Example 5.7. Creating a FileInfo Instance

> import fileinfo
> f = fileinfo.FileInfo("/music/_singles/kairo.mp3") 1

> f.__class__ 2

<class fileinfo.FileInfo at 010EC204>
> f.__doc__ 3

’store file metadata’
> f 4

{’name’: ’/music/_singles/kairo.mp3’}

1 You are creating an instance of the FileInfo class (defined in the fileinfo module) and
assigning the newly created instance to the variable f. You are passing one parameter,
/music/_singles/kairo.mp3, which will end up as the filename argument in File-
Info’s __init__ method.

2 Every class instance has a built-in attribute, __class__, which is the object’s class. (Note
that the representation of this includes the physical address of the instance on my machine;
your representation will be different.) Java programmers may be familiar with the Class

http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.python.org/doc/current/tut/node11.html
http://www.python.org/doc/current/tut/node11.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.faqts.com/knowledge-base/index.phtml/fid/242

71

class, which contains methods like getName and getSuperclass to get metadata infor-
mation about an object. In Python, this kind of metadata is available directly on the object
itself through attributes like __class__, __name__, and __bases__.

3 You can access the instance’s doc string just as with a function or a module. All in-
stances of a class share the same doc string.

4 Remember when the __init__ method assigned its filename argument to self["name"]?
Well, here’s the result. The arguments you pass when you create the class instance get sent
right along to the __init__ method (along with the object reference, self, which Python
adds for free).

Python vs. Java: Instantiating Classes
In Python, simply call a class as if it were a function to create a new instance of the class. There
is no explicit new operator like C++ or Java.

5.4.1 Garbage Collection

If creating new instances is easy, destroying them is even easier. In general, there is no need to
explicitly free instances, because they are freed automatically when the variables assigned to
them go out of scope. Memory leaks are rare in Python.

Example 5.8. Trying to Implement a Memory Leak

> def leakmem():
... f = fileinfo.FileInfo(’/music/_singles/kairo.mp3’) 1

...
> for i in range(100):
... leakmem() 2

1 Every time the leakmem function is called, you are creating an instance of FileInfo and
assigning it to the variable f, which is a local variable within the function. Then the function
ends without ever freeing f, so you would expect a memory leak, but you would be wrong.
When the function ends, the local variable f goes out of scope. At this point, there are no
longer any references to the newly created instance of FileInfo (since you never assigned
it to anything other than f), so Python destroys the instance for us.

2 No matter how many times you call the leakmem function, it will never leak memory,
because every time, Python will destroy the newly created FileInfo class before returning
from leakmem.

The technical term for this form of garbage collection is “reference counting”. Python keeps a
list of references to every instance created. In the above example, there was only one reference

72

to the FileInfo instance: the local variable f. When the function ends, the variable f goes out
of scope, so the reference count drops to 0, and Python destroys the instance automatically.

In previous versions of Python, there were situations where reference counting failed, and
Python couldn’t clean up after you. If you created two instances that referenced each other (for
instance, a doubly-linked list, where each node has a pointer to the previous and next node in
the list), neither instance would ever be destroyed automatically because Python (correctly)
believed that there is always a reference to each instance. Python 2.0 has an additional form
of garbage collection called “mark-and-sweep” which is smart enough to notice this virtual
gridlock and clean up circular references correctly.

As a former philosophy major, it disturbs me to think that things disappear when no one is
looking at them, but that’s exactly what happens in Python. In general, you can simply forget
about memory management and let Python clean up after you.

Further Reading on Garbage Collection

• Python Library Reference summarizes built-in attributes like __class__.

• Python Library Reference documents the gc module, which gives you low-level control
over Python’s garbage collection.

5.5 Exploring UserDict: A Wrapper Class

As you’ve seen, FileInfo is a class that acts like a dictionary. To explore this
further, let’s look at the UserDict class in the UserDict module, which is the
ancestor of the FileInfo class. This is nothing special; the class is written in
Python and stored in a .py file, just like any other Python code. In particular, it’s
stored in the lib directory in your Python installation.

In the ActivePython IDE on Windows, you can quickly open any module in your library path
by selecting File->Locate... (Ctrl-L).

Example 5.9. Defining the UserDict Class

class UserDict: 1

def __init__(self, dict=None): 2

self.data = {} 3

if dict is not None: self.update(dict) 4 5

1 Note that UserDict is a base class, not inherited from any other class.

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html
http://www.python.org/doc/current/lib/module-gc.html

73

2 This is the __init__ method that you overrode in the FileInfo class. Note that the argu-
ment list in this ancestor class is different than the descendant. That’s okay; each subclass
can have its own set of arguments, as long as it calls the ancestor with the correct argu-
ments. Here the ancestor class has a way to define initial values (by passing a dictionary in
the dict argument) which the FileInfo does not use.

3 Python supports data attributes (called “instance variables” in Java and Powerbuilder,
and “member variables” in C++). Data attributes are pieces of data held by a specific in-
stance of a class. In this case, each instance of UserDict will have a data attribute data. To
reference this attribute from code outside the class, you qualify it with the instance name,
instance.data, in the same way that you qualify a function with its module name. To ref-
erence a data attribute from within the class, you use self as the qualifier. By convention,
all data attributes are initialized to reasonable values in the __init__ method. However,
this is not required, since data attributes, like local variables, spring into existence when
they are first assigned a value.

4 The update method is a dictionary duplicator: it copies all the keys and values from one
dictionary to another. This does not clear the target dictionary first; if the target dictionary
already has some keys, the ones from the source dictionary will be overwritten, but others
will be left untouched. Think of update as a merge function, not a copy function.

5 This is a syntax you may not have seen before (I haven’t used it in the examples in this
book). It’s an if statement, but instead of having an indented block starting on the next
line, there is just a single statement on the same line, after the colon. This is perfectly legal
syntax, which is just a shortcut you can use when you have only one statement in a block.
(It’s like specifying a single statement without braces in C++.) You can use this syntax, or
you can have indented code on subsequent lines, but you can’t do both for the same block.

Python vs. Java: Function Overloading
Java and Powerbuilder support function overloading by argument list, i.e. one class can have
multiple methods with the same name but a different number of arguments, or arguments of
different types. Other languages (most notably PL/SQL) even support function overloading
by argument name; i.e. one class can have multiple methods with the same name and the same
number of arguments of the same type but different argument names. Python supports neither
of these; it has no form of function overloading whatsoever. Methods are defined solely by
their name, and there can be only one method per class with a given name. So if a descendant
class has an __init__ method, it always overrides the ancestor __init__ method, even if the
descendant defines it with a different argument list. And the same rule applies to any other
method.

74

Guido, the original author of Python, explains method overriding this way: "Derived classes
may override methods of their base classes. Because methods have no special privileges when
calling other methods of the same object, a method of a base class that calls another method
defined in the same base class, may in fact end up calling a method of a derived class that
overrides it. (For C++ programmers: all methods in Python are effectively virtual.)" If that
doesn’t make sense to you (it confuses the hell out of me), feel free to ignore it. I just thought
I’d pass it along.

Always assign an initial value to all of an instance’s data attributes in the __init__ method.
It will save you hours of debugging later, tracking down AttributeError exceptions because
you’re referencing uninitialized (and therefore non-existent) attributes.

Example 5.10. UserDict Normal Methods

def clear(self): self.data.clear() 1

def copy(self): 2

if self.__class__ is UserDict: 3

return UserDict(self.data)
import copy 4

return copy.copy(self)
def keys(self): return self.data.keys() 5

def items(self): return self.data.items()
def values(self): return self.data.values()

1 clear is a normal class method; it is publicly available to be called by anyone at any time.
Notice that clear, like all class methods, has self as its first argument. (Remember that
you don’t include self when you call the method; it’s something that Python adds for
you.) Also note the basic technique of this wrapper class: store a real dictionary (data) as a
data attribute, define all the methods that a real dictionary has, and have each class method
redirect to the corresponding method on the real dictionary. (In case you’d forgotten, a
dictionary’s clear method deletes all of its keys and their associated values.)

2 The copy method of a real dictionary returns a new dictionary that is an exact dupli-
cate of the original (all the same key-value pairs). But UserDict can’t simply redirect to
self.data.copy, because that method returns a real dictionary, and what you want is to
return a new instance that is the same class as self.

3 You use the __class__ attribute to see if self is a UserDict; if so, you’re golden, be-
cause you know how to copy a UserDict: just create a new UserDict and give it the real

75

dictionary that you’ve squirreled away in self.data. Then you immediately return the
new UserDict you don’t even get to the import copy on the next line.

4 If self.__class__ is not UserDict, then self must be some subclass of UserDict (like
maybe FileInfo), in which case life gets trickier. UserDict doesn’t know how to make
an exact copy of one of its descendants; there could, for instance, be other data attributes
defined in the subclass, so you would need to iterate through them and make sure to copy
all of them. Luckily, Python comes with a module to do exactly this, and it’s called copy. I
won’t go into the details here (though it’s a wicked cool module, if you’re ever inclined to
dive into it on your own). Suffice it to say that copy can copy arbitrary Python objects, and
that’s how you’re using it here.

5 The rest of the methods are straightforward, redirecting the calls to the built-in methods
on self.data.

Historical Note
In versions of Python prior to 2.2, you could not directly subclass built-in datatypes like strings,
lists, and dictionaries. To compensate for this, Python comes with wrapper classes that mimic
the behavior of these built-in datatypes: UserString, UserList, and UserDict. Using a
combination of normal and special methods, the UserDict class does an excellent imitation
of a dictionary. In Python 2.2 and later, you can inherit classes directly from built-in datatypes
like dict. An example of this is given in the examples that come with this book, in file-
info_fromdict.py.

In Python, you can inherit directly from the dict built-in datatype, as shown in this example.
There are three differences here compared to the UserDict version.

Example 5.11. Inheriting Directly from Built-In Datatype dict

class FileInfo(dict): 1

"store file metadata"
def __init__(self, filename=None): 2

self["name"] = filename

1 The first difference is that you don’t need to import the UserDict module, since dict is a
built-in datatype and is always available. The second is that you are inheriting from dict
directly, instead of from UserDict.UserDict.

2 The third difference is subtle but important. Because of the way UserDict works inter-
nally, it requires you to manually call its __init__ method to properly initialize its internal
data structures. dict does not work like this; it is not a wrapper, and it requires no explicit
initialization.

76

Further Reading on UserDict

• Python Library Reference documents the UserDict module and the copy module.

5.6 Special Class Methods
In addition to normal class methods, there are a number of special methods that
Python classes can define. Instead of being called directly by your code (like
normal methods), special methods are called for you by Python in particular
circumstances or when specific syntax is used.

As you saw in the previous section, normal methods go a long way towards wrapping a
dictionary in a class. But normal methods alone are not enough, because there are a lot of
things you can do with dictionaries besides call methods on them. For starters, you can get
and set items with a syntax that doesn’t include explicitly invoking methods. This is where
special class methods come in: they provide a way to map non-method-calling syntax into
method calls.

5.6.1 Getting and Setting Items

Example 5.12. The __getitem__ Special Method

def __getitem__(self, key): return self.data[key]

> f = fileinfo.FileInfo("/music/_singles/kairo.mp3")
> f
{’name’:’/music/_singles/kairo.mp3’}
> f.__getitem__("name") 1

’/music/_singles/kairo.mp3’
> f["name"] 2

’/music/_singles/kairo.mp3’

1 The __getitem__ special method looks simple enough. Like the normal methods clear,
keys, and values, it just redirects to the dictionary to return its value. But how does it get
called? Well, you can call __getitem__ directly, but in practice you wouldn’t actually do
that; I’m just doing it here to show you how it works. The right way to use __getitem__
is to get Python to call it for you.

2 This looks just like the syntax you would use to get a dictionary value, and in fact it re-
turns the value you would expect. But here’s the missing link: under the covers, Python has
converted this syntax to the method call f.__getitem__("name"). That’s why __getitem__
is a special class method; not only can you call it yourself, you can get Python to call it for
you by using the right syntax.

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html
http://www.python.org/doc/current/lib/module-copy.html

77

Of course, Python has a __setitem__ special method to go along with __getitem__, as
shown in the next example.

Example 5.13. The __setitem__ Special Method

def __setitem__(self, key, item): self.data[key] = item

> f
{’name’:’/music/_singles/kairo.mp3’}
> f.__setitem__("genre", 31) 1

> f
{’name’:’/music/_singles/kairo.mp3’, ’genre’:31}
> f["genre"] = 32 2

> f
{’name’:’/music/_singles/kairo.mp3’, ’genre’:32}

1 Like the __getitem__ method, __setitem__ simply redirects to the real dictionary self.data
to do its work. And like __getitem__, you wouldn’t ordinarily call it directly like this;
Python calls __setitem__ for you when you use the right syntax.

2 This looks like regular dictionary syntax, except of course that f is really a class that’s
trying very hard to masquerade as a dictionary, and __setitem__ is an essential part of
that masquerade. This line of code actually calls f.__setitem__("genre", 32) under
the covers.

__setitem__ is a special class method because it gets called for you, but it’s still a class
method. Just as easily as the __setitem__ method was defined in UserDict, you can redefine
it in the descendant class to override the ancestor method. This allows you to define classes
that act like dictionaries in some ways but define their own behavior above and beyond the
built-in dictionary.

This concept is the basis of the entire framework you’re studying in this chapter. Each file type
can have a handler class that knows how to get metadata from a particular type of file. Once
some attributes (like the file’s name and location) are known, the handler class knows how to
derive other attributes automatically. This is done by overriding the __setitem__ method,
checking for particular keys, and adding additional processing when they are found.

For example, MP3FileInfo is a descendant of FileInfo. When an MP3FileInfo’s name is
set, it doesn’t just set the name key (like the ancestor FileInfo does); it also looks in the file
itself for MP3 tags and populates a whole set of keys. The next example shows how this works.

Example 5.14. Overriding __setitem__ in MP3FileInfo

def __setitem__(self, key, item): 1

if key == "name" and item: 2

78

self.__parse(item) 3

FileInfo.__setitem__(self, key, item) 4

1 Notice that this __setitem__ method is defined exactly the same way as the ancestor
method. This is important, since Python will be calling the method for you, and it expects
it to be defined with a certain number of arguments. (Technically speaking, the names of
the arguments don’t matter; only the number of arguments is important.)

2 Here’s the crux of the entire MP3FileInfo class: if you’re assigning a value to the name
key, you want to do something extra.

3 The extra processing you do for names is encapsulated in the __parse method. This is
another class method defined in MP3FileInfo, and when you call it, you qualify it with
self. Just calling __parse would look for a normal function defined outside the class,
which is not what you want. Calling self.__parse will look for a class method defined
within the class. This isn’t anything new; you reference data attributes the same way.

4 After doing this extra processing, you want to call the ancestor method. Remember that
this is never done for you in Python; you must do it manually. Note that you’re calling
the immediate ancestor, FileInfo, even though it doesn’t have a __setitem__ method.
That’s okay, because Python will walk up the ancestor tree until it finds a class with the
method you’re calling, so this line of code will eventually find and call the __setitem__
defined in UserDict.

When accessing data attributes within a class, you need to qualify the attribute name: self.attribute.
When calling other methods within a class, you need to qualify the method name: self.method.

Example 5.15. Setting an MP3FileInfo’s name

> import fileinfo
> mp3file = fileinfo.MP3FileInfo() 1

> mp3file
{’name’:None}
> mp3file["name"] = "/music/_singles/kairo.mp3" 2

> mp3file
{’album’: ’Rave Mix’, ’artist’: ’***DJ MARY-JANE***’, ’genre’: 31,
’title’: ’KAIRO****THE BEST GOA’, ’name’: ’/music/_singles/kairo.mp3’,
’year’: ’2000’, ’comment’: ’http://mp3.com/DJMARYJANE’}
> mp3file["name"] = "/music/_singles/sidewinder.mp3" 3

> mp3file
{’album’: ’’, ’artist’: ’The Cynic Project’, ’genre’: 18, ’title’: ’Sidewinder’,
’name’: ’/music/_singles/sidewinder.mp3’, ’year’: ’2000’,
’comment’: ’http://mp3.com/cynicproject’}

79

1 First, you create an instance of MP3FileInfo, without passing it a filename. (You can
get away with this because the filename argument of the __init__ method is optional.)
Since MP3FileInfo has no __init__ method of its own, Python walks up the ancestor tree
and finds the __init__ method of FileInfo. This __init__ method manually calls the
__init__ method of UserDict and then sets the name key to filename, which is None,
since you didn’t pass a filename. Thus, mp3file initially looks like a dictionary with one
key, name, whose value is None.

2 Now the real fun begins. Setting the name key of mp3file triggers the __setitem__
method on MP3FileInfo (not UserDict), which notices that you’re setting the name key
with a real value and calls self.__parse. Although you haven’t traced through the
__parse method yet, you can see from the output that it sets several other keys: album,
artist, genre, title, year, and comment.

3 Modifying the name key will go through the same process again: Python calls __setitem__,
which calls self.__parse, which sets all the other keys.

5.7 Advanced Special Class Methods

Python has more special methods than just __getitem__ and __setitem__.
Some of them let you emulate functionality that you may not even know about.

This example shows some of the other special methods in UserDict.

Example 5.16. More Special Methods in UserDict

def __repr__(self): return repr(self.data) 1

def __cmp__(self, dict): 2

if isinstance(dict, UserDict):
return cmp(self.data, dict.data)

else:
return cmp(self.data, dict)

def __len__(self): return len(self.data) 3

def __delitem__(self, key): del self.data[key] 4

1 __repr__ is a special method that is called when you call repr(instance). The repr
function is a built-in function that returns a string representation of an object. It works
on any object, not just class instances. You’re already intimately familiar with repr and
you don’t even know it. In the interactive window, when you type just a variable name
and press the ENTER key, Python uses repr to display the variable’s value. Go create a
dictionary d with some data and then print repr(d) to see for yourself.

80

2 __cmp__ is called when you compare class instances. In general, you can compare any two
Python objects, not just class instances, by using ==. There are rules that define when built-
in datatypes are considered equal; for instance, dictionaries are equal when they have all
the same keys and values, and strings are equal when they are the same length and contain
the same sequence of characters. For class instances, you can define the __cmp__ method
and code the comparison logic yourself, and then you can use == to compare instances of
your class and Python will call your __cmp__ special method for you.

3 __len__ is called when you call len(instance). The len function is a built-in function
that returns the length of an object. It works on any object that could reasonably be thought
of as having a length. The len of a string is its number of characters; the len of a dictio-
nary is its number of keys; the len of a list or tuple is its number of elements. For class
instances, define the __len__ method and code the length calculation yourself, and then
call len(instance) and Python will call your __len__ special method for you.

4 __delitem__ is called when you call del instance[key], which you may remember
as the way to delete individual items from a dictionary. When you use del on a class
instance, Python calls the __delitem__ special method for you.

Python vs. Java equality and identity
In Java, you determine whether two string variables reference the same physical memory loca-
tion by using str1 == str2. This is called object identity, and it is written in Python as str1
is str2. To compare string values in Java, you would use str1.equals(str2); in Python,
you would use str1 == str2. Java programmers who have been taught to believe that the
world is a better place because == in Java compares by identity instead of by value may have
a difficult time adjusting to Python’s lack of such “gotchas”.

At this point, you may be thinking, “All this work just to do something in a class that I can do
with a built-in datatype.” And it’s true that life would be easier (and the entire UserDict class
would be unnecessary) if you could inherit from built-in datatypes like a dictionary. But even
if you could, special methods would still be useful, because they can be used in any class, not
just wrapper classes like UserDict.

Special methods mean that any class can store key/value pairs like a dictionary, just by defin-
ing the __setitem__ method. Any class can act like a sequence, just by defining the __getitem__
method. Any class that defines the __cmp__ method can be compared with ==. And if your
class represents something that has a length, don’t define a GetLength method; define the
__len__ method and use len(instance).

81

While other object-oriented languages only let you define the physical model of an object (“this
object has a GetLength method”), Python’s special class methods like __len__ allow you to
define the logical model of an object (“this object has a length”).

Python has a lot of other special methods. There’s a whole set of them that let classes act like
numbers, allowing you to add, subtract, and do other arithmetic operations on class instances.
(The canonical example of this is a class that represents complex numbers, numbers with both
real and imaginary components.) The __call__ method lets a class act like a function, allow-
ing you to call a class instance directly. And there are other special methods that allow classes
to have read-only and write-only data attributes; you’ll talk more about those in later chapters.

Further Reading on Special Class Methods

• Python Reference Manual documents all the special class methods.

5.8 Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific
instance of a class. Python also supports class attributes, which are variables
owned by the class itself.

Example 5.17. Introducing Class Attributes

class MP3FileInfo(FileInfo):
"store ID3v1.0 MP3 tags"
tagDataMap = {"title" : (3, 33, stripnulls),

"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

> import fileinfo
> fileinfo.MP3FileInfo 1

<class fileinfo.MP3FileInfo at 01257FDC>
> fileinfo.MP3FileInfo.tagDataMap 2

{’title’: (3, 33, <function stripnulls at 0260C8D4>),
’genre’: (127, 128, <built-in function ord>),
’artist’: (33, 63, <function stripnulls at 0260C8D4>),
’year’: (93, 97, <function stripnulls at 0260C8D4>),
’comment’: (97, 126, <function stripnulls at 0260C8D4>),
’album’: (63, 93, <function stripnulls at 0260C8D4>)}
> m = fileinfo.MP3FileInfo() 3

> m.tagDataMap
{’title’: (3, 33, <function stripnulls at 0260C8D4>),

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/ref/specialnames.html

82

’genre’: (127, 128, <built-in function ord>),
’artist’: (33, 63, <function stripnulls at 0260C8D4>),
’year’: (93, 97, <function stripnulls at 0260C8D4>),
’comment’: (97, 126, <function stripnulls at 0260C8D4>),
’album’: (63, 93, <function stripnulls at 0260C8D4>)}

1 MP3FileInfo is the class itself, not any particular instance of the class.

2 tagDataMap is a class attribute: literally, an attribute of the class. It is available before
creating any instances of the class.

3 Class attributes are available both through direct reference to the class and through any
instance of the class.

Python vs. Java attribute definitions
In Java, both static variables (called class attributes in Python) and instance variables (called
data attributes in Python) are defined immediately after the class definition (one with the
static keyword, one without). In Python, only class attributes can be defined here; data
attributes are defined in the __init__ method.

Class attributes can be used as class-level constants (which is how you use them in MP3FileInfo),
but they are not really constants. You can also change them.

There are no constants in Python. Everything can be changed if you try hard enough. This fits
with one of the core principles of Python: bad behavior should be discouraged but not banned.
If you really want to change the value of None, you can do it, but don’t come running to me
when your code is impossible to debug.

Example 5.18. Modifying Class Attributes

> class counter:
... count = 0 1

... def __init__(self):

... self.__class__.count += 1 2

...
> counter
<class __main__.counter at 010EAECC>
> counter.count 3

0
> c = counter()
> c.count 4

1
> counter.count

83

1
> d = counter() 5

> d.count
2
> c.count
2
> counter.count
2

1 count is a class attribute of the counter class.

2 __class__ is a built-in attribute of every class instance (of every class). It is a reference to
the class that self is an instance of (in this case, the counter class).

3 Because count is a class attribute, it is available through direct reference to the class, before
you have created any instances of the class.

4 Creating an instance of the class calls the __init__ method, which increments the class
attribute count by 1. This affects the class itself, not just the newly created instance.

5 Creating a second instance will increment the class attribute count again. Notice how the
class attribute is shared by the class and all instances of the class.

5.9 Private Functions

Like most languages, Python has the concept of private elements:

• Private functions, which can’t be called from outside their module

• Private class methods, which can’t be called from outside their class

• Private attributes, which can’t be accessed from outside their class.

Unlike in most languages, whether a Python function, method, or attribute is
private or public is determined entirely by its name.

If the name of a Python function, class method, or attribute starts with (but doesn’t end with)
two underscores, it’s private; everything else is public. Python has no concept of protected
class methods (accessible only in their own class and descendant classes). Class methods are
either private (accessible only in their own class) or public (accessible from anywhere).

In MP3FileInfo, there are two methods: __parse and __setitem__. As you have already
discussed, __setitem__ is a special method; normally, you would call it indirectly by using
the dictionary syntax on a class instance, but it is public, and you could call it directly (even

84

from outside the fileinfo module) if you had a really good reason. However, __parse is
private, because it has two underscores at the beginning of its name.

Method Naming Conventions
In Python, all special methods (like __setitem__) and built-in attributes (like __doc__) follow a
standard naming convention: they both start with and end with two underscores. Don’t name
your own methods and attributes this way, because it will only confuse you (and others) later.

Example 5.19. Trying to Call a Private Method

> import fileinfo
> m = fileinfo.MP3FileInfo()
> m.__parse("/music/_singles/kairo.mp3") 1

Traceback (innermost last):
File "<interactive input>", line 1, in ?

AttributeError: ’MP3FileInfo’ instance has no attribute ’__parse’

1 If you try to call a private method, Python will raise a slightly misleading exception, saying
that the method does not exist. Of course it does exist, but it’s private, so it’s not accessible
outside the class.

Strictly speaking, private methods are accessible outside their class, just not easily acces-
sible. Nothing in Python is truly private; internally, the names of private methods and
attributes are mangled and unmangled on the fly to make them seem inaccessible by their
given names. You can access the __parse method of the MP3FileInfo class by the name
_MP3FileInfo__parse. Acknowledge that this is interesting, but promise to never, ever
do it in real code. Private methods are private for a reason, but like many other things in
Python, their privateness is ultimately a matter of convention, not force.

Further Reading on Private Functions

• Python Tutorial discusses the inner workings of private variables.

5.10 Summary

That’s it for the hard-core object trickery. You’ll see a real-world application of
special class methods in Chapter 12, which uses getattr to create a proxy to a
remote web service.

The next chapter will continue using this code sample to explore other Python concepts, such
as exceptions, file objects, and for loops.

Before diving into the next chapter, make sure you’re comfortable doing all of these things:

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000

85

• Importing modules using either import module or from module import

• Defining and instantiating classes

• Defining __init__ methods and other special class methods, and understanding when they
are called

• Subclassing UserDict to define classes that act like dictionaries

• Defining data attributes and class attributes, and understanding the differences between
them

• Defining private attributes and methods

86

6 Exceptions and File Handling

In this chapter, you will dive into exceptions, file objects, for loops, and the os
and sys modules. If you’ve used exceptions in another programming language,
you can skim the first section to get a sense of Python’s syntax. Be sure to tune in
again for file handling.

6.1 Handling Exceptions

Like many other programming languages, Python has exception handling via
try...except blocks.

Python vs. Java exception handling
Python uses try...except to handle exceptions and raise to generate them. Java and C++
use try...catch to handle exceptions, and throw to generate them.

Exceptions are everywhere in Python. Virtually every module in the standard Python library
uses them, and Python itself will raise them in a lot of different circumstances. You’ve already
seen them repeatedly throughout this book.

• Accessing a non-existent dictionary key will raise a KeyError exception.

• Searching a list for a non-existent value will raise a ValueError exception.

• Calling a non-existent method will raise an AttributeError exception.

• Referencing a non-existent variable will raise a NameError exception.

• Mixing datatypes without coercion will raise a TypeError exception.

In each of these cases, you were simply playing around in the Python IDE: an error occurred,
the exception was printed (depending on your IDE, perhaps in an intentionally jarring shade
of red), and that was that. This is called an unhandled exception. When the exception was
raised, there was no code to explicitly notice it and deal with it, so it bubbled its way back to
the default behavior built in to Python, which is to spit out some debugging information and
give up. In the IDE, that’s no big deal, but if that happened while your actual Python program
was running, the entire program would come to a screeching halt.

An exception doesn’t need result in a complete program crash, though. Exceptions, when
raised, can be handled. Sometimes an exception is really because you have a bug in your code
(like accessing a variable that doesn’t exist), but many times, an exception is something you

87

can anticipate. If you’re opening a file, it might not exist. If you’re connecting to a database,
it might be unavailable, or you might not have the correct security credentials to access it. If
you know a line of code may raise an exception, you should handle the exception using a
try...except block.

Example 6.1. Opening a Non-Existent File

> fsock = open("/notthere", "r") 1

Traceback (innermost last):
File "<interactive input>", line 1, in ?

IOError: [Errno 2] No such file or directory: ’/notthere’
> try:
... fsock = open("/notthere") 2

... except IOError: 3

... print "The file does not exist, exiting gracefully"

... print "This line will always print" 4

The file does not exist, exiting gracefully
This line will always print

1 Using the built-in open function, you can try to open a file for reading (more on open in
the next section). But the file doesn’t exist, so this raises the IOError exception. Since you
haven’t provided any explicit check for an IOError exception, Python just prints out some
debugging information about what happened and then gives up.

2 You’re trying to open the same non-existent file, but this time you’re doing it within a
try...except block.

3 When the open method raises an IOError exception, you’re ready for it. The except
IOError: line catches the exception and executes your own block of code, which in this
case just prints a more pleasant error message.

4 Once an exception has been handled, processing continues normally on the first line after
the try...except block. Note that this line will always print, whether or not an exception
occurs. If you really did have a file called notthere in your root directory, the call to open
would succeed, the except clause would be ignored, and this line would still be executed.

Exceptions may seem unfriendly (after all, if you don’t catch the exception, your entire pro-
gram will crash), but consider the alternative. Would you rather get back an unusable file
object to a non-existent file? You’d need to check its validity somehow anyway, and if you for-
got, somewhere down the line, your program would give you strange errors somewhere down
the line that you would need to trace back to the source. I’m sure you’ve experienced this, and
you know it’s not fun. With exceptions, errors occur immediately, and you can handle them in
a standard way at the source of the problem.

88

6.1.1 Using Exceptions For Other Purposes

There are a lot of other uses for exceptions besides handling actual error conditions. A common
use in the standard Python library is to try to import a module, and then check whether it
worked. Importing a module that does not exist will raise an ImportError exception. You can
use this to define multiple levels of functionality based on which modules are available at run-
time, or to support multiple platforms (where platform-specific code is separated into different
modules).

You can also define your own exceptions by creating a class that inherits from the built-in
Exception class, and then raise your exceptions with the raise command. See the further
reading section if you’re interested in doing this.

The next example demonstrates how to use an exception to support platform-specific function-
ality. This code comes from the getpass module, a wrapper module for getting a password
from the user. Getting a password is accomplished differently on UNIX, Windows, and Mac
OS platforms, but this code encapsulates all of those differences.

Example 6.2. Supporting Platform-Specific Functionality

Bind the name getpass to the appropriate function
try:

import termios, TERMIOS 1

except ImportError:
try:

import msvcrt 2

except ImportError:
try:

from EasyDialogs import AskPassword 3

except ImportError:
getpass = default_getpass 4

else: 5

getpass = AskPassword
else:

getpass = win_getpass
else:

getpass = unix_getpass

1 termios is a UNIX-specific module that provides low-level control over the input termi-
nal. If this module is not available (because it’s not on your system, or your system doesn’t
support it), the import fails and Python raises an ImportError, which you catch.

2 OK, you didn’t have termios, so let’s try msvcrt, which is a Windows-specific module
that provides an API to many useful functions in the Microsoft Visual C++ runtime services.
If this import fails, Python will raise an ImportError, which you catch.

89

3 If the first two didn’t work, you try to import a function from EasyDialogs, which is a
Mac OS-specific module that provides functions to pop up dialog boxes of various types.
Once again, if this import fails, Python will raise an ImportError, which you catch.

4 None of these platform-specific modules is available (which is possible, since Python has
been ported to a lot of different platforms), so you need to fall back on a default password
input function (which is defined elsewhere in the getpass module). Notice what you’re
doing here: assigning the function default_getpass to the variable getpass. If you read
the official getpass documentation, it tells you that the getpass module defines a get-
pass function. It does this by binding getpass to the correct function for your platform.
Then when you call the getpass function, you’re really calling a platform-specific function
that this code has set up for you. You don’t need to know or care which platform your code
is running on -- just call getpass, and it will always do the right thing.

5 A try...except block can have an else clause, like an if statement. If no exception is
raised during the try block, the else clause is executed afterwards. In this case, that means
that the from EasyDialogs import AskPassword import worked, so you should bind
getpass to the AskPassword function. Each of the other try...except blocks has similar
else clauses to bind getpass to the appropriate function when you find an import that
works.

Further Reading on Exception Handling

• Python Tutorial discusses defining and raising your own exceptions, and handling multiple
exceptions at once.

• Python Library Reference summarizes all the built-in exceptions.

• Python Library Reference documents the getpass module.

• Python Library Reference documents the traceback module, which provides low-level
access to exception attributes after an exception is raised.

• Python Reference Manual discusses the inner workings of the try...except block.

6.2 Working with File Objects

Python has a built-in function, open, for opening a file on disk. open returns a
file object, which has methods and attributes for getting information about and
manipulating the opened file.

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html
http://www.python.org/doc/current/ref/try.html

90

Example 6.3. Opening a File

> f = open("/music/_singles/kairo.mp3", "rb") 1

> f 2

<open file ’/music/_singles/kairo.mp3’, mode ’rb’ at 010E3988>
> f.mode 3

’rb’
> f.name 4

’/music/_singles/kairo.mp3’

1 The open method can take up to three parameters: a filename, a mode, and a buffering
parameter. Only the first one, the filename, is required; the other two are optional. If not
specified, the file is opened for reading in text mode. Here you are opening the file for
reading in binary mode. (print open.__doc__ displays a great explanation of all the
possible modes.)

2 The open function returns an object (by now, this should not surprise you). A file object
has several useful attributes.

3 The mode attribute of a file object tells you in which mode the file was opened.

4 The name attribute of a file object tells you the name of the file that the file object has open.

6.2.1 Reading Files

After you open a file, the first thing you’ll want to do is read from it, as shown in the next
example.

Example 6.4. Reading a File

> f
<open file ’/music/_singles/kairo.mp3’, mode ’rb’ at 010E3988>
> f.tell() 1

0
> f.seek(-128, 2) 2

> f.tell() 3

7542909
> tagData = f.read(128) 4

> tagData
’TAGKAIRO****THE BEST GOA ***DJ MARY-JANE***
Rave Mix 2000http://mp3.com/DJMARYJANE \037’
> f.tell() 5

7543037

91

1 A file object maintains state about the file it has open. The tell method of a file object
tells you your current position in the open file. Since you haven’t done anything with this
file yet, the current position is 0, which is the beginning of the file.

2 The seek method of a file object moves to another position in the open file. The second pa-
rameter specifies what the first one means; 0 means move to an absolute position (counting
from the start of the file), 1 means move to a relative position (counting from the current
position), and 2 means move to a position relative to the end of the file. Since the MP3 tags
you’re looking for are stored at the end of the file, you use 2 and tell the file object to move
to a position 128 bytes from the end of the file.

3 The tell method confirms that the current file position has moved.

4 The read method reads a specified number of bytes from the open file and returns a string
with the data that was read. The optional parameter specifies the maximum number of
bytes to read. If no parameter is specified, read will read until the end of the file. (You
could have simply said read() here, since you know exactly where you are in the file
and you are, in fact, reading the last 128 bytes.) The read data is assigned to the tagData
variable, and the current position is updated based on how many bytes were read.

5 The tell method confirms that the current position has moved. If you do the math, you’ll
see that after reading 128 bytes, the position has been incremented by 128.

6.2.2 Closing Files

Open files consume system resources, and depending on the file mode, other programs may
not be able to access them. It’s important to close files as soon as you’re finished with them.

Example 6.5. Closing a File

> f
<open file ’/music/_singles/kairo.mp3’, mode ’rb’ at 010E3988>
> f.closed 1

False
> f.close() 2

> f
<closed file ’/music/_singles/kairo.mp3’, mode ’rb’ at 010E3988>
> f.closed 3

True
> f.seek(0) 4

Traceback (innermost last):
File "<interactive input>", line 1, in ?

ValueError: I/O operation on closed file
> f.tell()

92

Traceback (innermost last):
File "<interactive input>", line 1, in ?

ValueError: I/O operation on closed file
> f.read()
Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: I/O operation on closed file
> f.close() 5

1 The closed attribute of a file object indicates whether the object has a file open or not. In
this case, the file is still open (closed is False).

2 To close a file, call the close method of the file object. This frees the lock (if any) that
you were holding on the file, flushes buffered writes (if any) that the system hadn’t gotten
around to actually writing yet, and releases the system resources.

3 The closed attribute confirms that the file is closed.

4 Just because a file is closed doesn’t mean that the file object ceases to exist. The variable f
will continue to exist until it goes out of scope or gets manually deleted. However, none of
the methods that manipulate an open file will work once the file has been closed; they all
raise an exception.

5 Calling close on a file object whose file is already closed does not raise an exception; it
fails silently.

6.2.3 Handling I/O Errors

Now you’ve seen enough to understand the file handling code in the fileinfo.py sample
code from teh previous chapter. This example shows how to safely open and read from a file
and gracefully handle errors.

Example 6.6. File Objects in MP3FileInfo

try: 1

fsock = open(filename, "rb", 0) 2

try:
fsock.seek(-128, 2) 3

tagdata = fsock.read(128) 4

finally: 5

fsock.close()
.
.
.

except IOError: 6

pass

93

1 Because opening and reading files is risky and may raise an exception, all of this code is
wrapped in a try...except block. (Hey, isn’t standardized indentation great? This is
where you start to appreciate it.)

2 The open function may raise an IOError. (Maybe the file doesn’t exist.)

3 The seek method may raise an IOError. (Maybe the file is smaller than 128 bytes.)

4 The read method may raise an IOError. (Maybe the disk has a bad sector, or it’s on a
network drive and the network just went down.)

5 This is new: a try...finally block. Once the file has been opened successfully by the
open function, you want to make absolutely sure that you close it, even if an exception
is raised by the seek or read methods. That’s what a try...finally block is for: code
in the finally block will always be executed, even if something in the try block raises
an exception. Think of it as code that gets executed on the way out, regardless of what
happened before.

6 At last, you handle your IOError exception. This could be the IOError exception raised by
the call to open, seek, or read. Here, you really don’t care, because all you’re going to do is
ignore it silently and continue. (Remember, pass is a Python statement that does nothing.)
That’s perfectly legal; “handling” an exception can mean explicitly doing nothing. It still
counts as handled, and processing will continue normally on the next line of code after the
try...except block.

6.2.4 Writing to Files

As you would expect, you can also write to files in much the same way that you read from
them. There are two basic file modes:

• "Append" mode will add data to the end of the file.

• "write" mode will overwrite the file.

Either mode will create the file automatically if it doesn’t already exist, so there’s never a need
for any sort of fiddly "if the log file doesn’t exist yet, create a new empty file just so you can
open it for the first time" logic. Just open it and start writing.

Example 6.7. Writing to Files

> logfile = open(’test.log’, ’w’) 1

> logfile.write(’test succeeded’) 2

> logfile.close()

94

> print file(’test.log’).read() 3

test succeeded
> logfile = open(’test.log’, ’a’) 4

> logfile.write(’line 2’)
> logfile.close()
> print file(’test.log’).read() 5

test succeededline 2

1 You start boldly by creating either the new file test.log or overwrites the existing file,
and opening the file for writing. (The second parameter "w" means open the file for writ-
ing.) Yes, that’s all as dangerous as it sounds. I hope you didn’t care about the previous
contents of that file, because it’s gone now.

2 You can add data to the newly opened file with the write method of the file object re-
turned by open.

3 file is a synonym for open. This one-liner opens the file, reads its contents, and prints
them.

4 You happen to know that test.log exists (since you just finished writing to it), so you can
open it and append to it. (The "a" parameter means open the file for appending.) Actually
you could do this even if the file didn’t exist, because opening the file for appending will
create the file if necessary. But appending will never harm the existing contents of the file.

5 As you can see, both the original line you wrote and the second line you appended are
now in test.log. Also note that carriage returns are not included. Since you didn’t write
them explicitly to the file either time, the file doesn’t include them. You can write a carriage
return with the "\n" character. Since you didn’t do this, everything you wrote to the file
ended up smooshed together on the same line.

Further Reading on File Handling

• Python Tutorial discusses reading and writing files, including how to read a file one line
at a time into a list.

• eff-bot discusses efficiency and performance of various ways of reading a file.

• Python Knowledge Base answers common questions about files.

• Python Library Reference summarizes all the file object methods.

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.effbot.org/guides/readline-performance.htm
http://www.effbot.org/guides/readline-performance.htm
http://www.effbot.org/guides/readline-performance.htm
http://www.effbot.org/guides/readline-performance.htm
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/lib/bltin-file-objects.html

95

6.3 Iterating with for Loops

Like most other languages, Python has for loops. The only reason you haven’t
seen them until now is that Python is good at so many other things that you don’t
need them as often.

Most other languages don’t have a powerful list datatype like Python, so you end up doing a
lot of manual work, specifying a start, end, and step to define a range of integers or characters
or other iteratable entities. But in Python, a for loop simply iterates over a list, the same way
list comprehensions work.

Example 6.8. Introducing the for Loop

> li = [’a’, ’b’, ’e’]
> for s in li: 1

... print s 2

a
b
e
> print "\n".join(li) 3

a
b
e

1 The syntax for a for loop is similar to list comprehensions. li is a list, and s will take the
value of each element in turn, starting from the first element.

2 Like an if statement or any other indented block, a for loop can have any number of
lines of code in it.

3 This is the reason you haven’t seen the for loop yet: you haven’t needed it yet. It’s
amazing how often you use for loops in other languages when all you really want is a
join or a list comprehension.

Doing a “normal” (by Visual Basic standards) counter for loop is also simple.

Example 6.9. Simple Counters

> for i in range(5): 1

... print i
0
1
2
3
4

96

> li = [’a’, ’b’, ’c’, ’d’, ’e’]
> for i in range(len(li)): 2

... print li[i]
a
b
c
d
e

1 As you saw in Example 3.20, range produces a list of integers, which you then loop
through. I know it looks a bit odd, but it is occasionally (and I stress occasionally) use-
ful to have a counter loop.

2 Don’t ever do this. This is Visual Basic-style thinking. Break out of it. Just iterate through
the list, as shown in the previous example.

for loops are not just for simple counters. They can iterate through all kinds of things. Here is
an example of using a for loop to iterate through a dictionary.

Example 6.10. Iterating Through a Dictionary

> import os
> for k, v in os.environ.items(): 1 2

... print "%s=%s" % (k, v)
USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT
COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]
> print "\n".join(["%s=%s" % (k, v)
... for k, v in os.environ.items()]) 3

USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT
COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]

1 os.environ is a dictionary of the environment variables defined on your system. In Win-
dows, these are your user and system variables accessible from MS-DOS. In UNIX, they
are the variables exported in your shell’s startup scripts. In Mac OS, there is no concept of
environment variables, so this dictionary is empty.

2 os.environ.items() returns a list of tuples: [(key1, value1), (key2, value2),
...]. The for loop iterates through this list. The first round, it assigns key1 to k and

97

value1 to v, so k = USERPROFILE and v = C:\Documents and Settings\mpilgrim. In
the second round, k gets the second key, OS, and v gets the corresponding value, Windows_NT.

3 With multi-variable assignment and list comprehensions, you can replace the entire for
loop with a single statement. Whether you actually do this in real code is a matter of
personal coding style. I like it because it makes it clear that what I’m doing is mapping a
dictionary into a list, then joining the list into a single string. Other programmers prefer to
write this out as a for loop. The output is the same in either case, although this version is
slightly faster, because there is only one print statement instead of many.

Now we can look at the for loop in MP3FileInfo, from the sample fileinfo.py program
introduced in Chapter 5.

Example 6.11. for Loop in MP3FileInfo

tagDataMap = {"title" : (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)} 1

.

.

.
if tagdata[:3] == "TAG":

for tag, (start, end, parseFunc) in self.tagDataMap.items(): 2

self[tag] = parseFunc(tagdata[start:end]) 3

1 tagDataMap is a class attribute that defines the tags you’re looking for in an MP3 file.
Tags are stored in fixed-length fields. Once you read the last 128 bytes of the file, bytes
3 through 32 of those are always the song title, 33 through 62 are always the artist name,
63 through 92 are the album name, and so forth. Note that tagDataMap is a dictionary of
tuples, and each tuple contains two integers and a function reference.

2 This looks complicated, but it’s not. The structure of the for variables matches the struc-
ture of the elements of the list returned by items. Remember that items returns a list of
tuples of the form (key, value). The first element of that list is ("title", (3, 33,
<function stripnulls>)), so the first time around the loop, tag gets "title", start
gets 3, end gets 33, and parseFunc gets the function stripnulls.

3 Now that you’ve extracted all the parameters for a single MP3 tag, saving the tag data is
easy. You slice tagdata from start to end to get the actual data for this tag, call parse-
Func to post-process the data, and assign this as the value for the key tag in the pseudo-
dictionary self. After iterating through all the elements in tagDataMap, self has the
values for all the tags, and you know what that looks like.

98

6.4 Using sys.modules
Modules, like everything else in Python, are objects. Once imported, you can
always get a reference to a module through the global dictionary sys.modules.

Example 6.12. Introducing sys.modules

> import sys 1

> print ’\n’.join(sys.modules.keys()) 2

win32api
os.path
os
exceptions
__main__
ntpath
nt
sys
__builtin__
site
signal
UserDict
stat

1 The sys module contains system-level information, such as the version of Python you’re
running (sys.version or sys.version_info), and system-level options such as the max-
imum allowed recursion depth (sys.getrecursionlimit() and sys.setrecursionlimit()).

2 sys.modules is a dictionary containing all the modules that have ever been imported
since Python was started; the key is the module name, the value is the module object.
Note that this is more than just the modules your program has imported. Python preloads
some modules on startup, and if you’re using a Python IDE, sys.modules contains all the
modules imported by all the programs you’ve run within the IDE.

This example demonstrates how to use sys.modules.

Example 6.13. Using sys.modules

> import fileinfo 1

> print ’\n’.join(sys.modules.keys())
win32api
os.path
os
fileinfo
exceptions
__main__
ntpath

99

nt
sys
__builtin__
site
signal
UserDict
stat
> fileinfo
<module ’fileinfo’ from ’fileinfo.pyc’>
> sys.modules["fileinfo"] 2

<module ’fileinfo’ from ’fileinfo.pyc’>

1 As new modules are imported, they are added to sys.modules. This explains why im-
porting the same module twice is very fast: Python has already loaded and cached the
module in sys.modules, so importing the second time is simply a dictionary lookup.

2 Given the name (as a string) of any previously-imported module, you can get a reference
to the module itself through the sys.modules dictionary.

The next example shows how to use the __module__ class attribute with the sys.modules
dictionary to get a reference to the module in which a class is defined.

Example 6.14. The __module__ Class Attribute

> from fileinfo import MP3FileInfo
> MP3FileInfo.__module__ 1

’fileinfo’
> sys.modules[MP3FileInfo.__module__] 2

<module ’fileinfo’ from ’fileinfo.pyc’>

1 Every Python class has a built-in class attribute __module__, which is the name of the
module in which the class is defined.

2 Combining this with the sys.modules dictionary, you can get a reference to the module
in which a class is defined.

Now you’re ready to see how sys.modules is used in fileinfo.py, the sample program
introduced in Chapter 5. This example shows that portion of the code.

Example 6.15. sys.modules in fileinfo.py

def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]): 1

"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:] 2

return hasattr(module, subclass) and getattr(module, subclass) or FileInfo 3

100

1 This is a function with two arguments; filename is required, but module is optional and
defaults to the module that contains the FileInfo class. This looks inefficient, because
you might expect Python to evaluate the sys.modules expression every time the function
is called. In fact, Python evaluates default expressions only once, the first time the module
is imported. As you’ll see later, you never call this function with a module argument, so
module serves as a function-level constant.

2 You’ll plow through this line later, after you dive into the os module. For now, take it on
faith that subclass ends up as the name of a class, like MP3FileInfo.

3 You already know about getattr, which gets a reference to an object by name. hasattr is
a complementary function that checks whether an object has a particular attribute; in this
case, whether a module has a particular class (although it works for any object and any
attribute, just like getattr). In English, this line of code says, “If this module has the class
named by subclass then return it, otherwise return the base class FileInfo.”

Further Reading on Modules

• Python Tutorial discusses exactly when and how default arguments are evaluated.

• Python Library Reference documents the sys module.

6.5 Working with Directories
The os.path module has several functions for manipulating files and directo-
ries. Here, we’re looking at handling pathnames and listing the contents of a
directory.

Example 6.16. Constructing Pathnames

> import os
> os.path.join("c:\\music\\ap\\", "mahadeva.mp3") 1 2

’c:\\music\\ap\\mahadeva.mp3’
> os.path.join("c:\\music\\ap", "mahadeva.mp3") 3

’c:\\music\\ap\\mahadeva.mp3’
> os.path.expanduser("~") 4

’c:\\Documents and Settings\\mpilgrim\\My Documents’
> os.path.join(os.path.expanduser("~"), "Python") 5

’c:\\Documents and Settings\\mpilgrim\\My Documents\\Python’

1 os.path is a reference to a module -- which module depends on your platform. Just
as getpass encapsulates differences between platforms by setting getpass to a platform-
specific function, os encapsulates differences between platforms by setting path to a platform-
specific module.

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html

101

2 The join function of os.path constructs a pathname out of one or more partial path-
names. In this case, it simply concatenates strings. (Note that dealing with pathnames on
Windows is annoying because the backslash character must be escaped.)

3 In this slightly less trivial case, join will add an extra backslash to the pathname before
joining it to the filename. I was overjoyed when I discovered this, since addSlashIfNec-
essary is one of the stupid little functions I always need to write when building up my
toolbox in a new language. Do not write this stupid little function in Python; smart people
have already taken care of it for you.

4 expanduser will expand a pathname that uses ~ to represent the current user’s home
directory. This works on any platform where users have a home directory, like Windows,
UNIX, and Mac OS X; it has no effect on Mac OS.

5 Combining these techniques, you can easily construct pathnames for directories and files
under the user’s home directory.

Example 6.17. Splitting Pathnames

> os.path.split("c:\\music\\ap\\mahadeva.mp3") 1

(’c:\\music\\ap’, ’mahadeva.mp3’)
> (filepath, filename) = os.path.split("c:\\music\\ap\\mahadeva.mp3") 2

> filepath 3

’c:\\music\\ap’
> filename 4

’mahadeva.mp3’
> (shortname, extension) = os.path.splitext(filename) 5

> shortname
’mahadeva’
> extension
’.mp3’

1 The split function splits a full pathname and returns a tuple containing the path and file-
name. Remember when I said you could use multi-variable assignment to return multiple
values from a function? Well, split is such a function.

2 You assign the return value of the split function into a tuple of two variables. Each
variable receives the value of the corresponding element of the returned tuple.

3 The first variable, filepath, receives the value of the first element of the tuple returned
from split, the file path.

4 The second variable, filename, receives the value of the second element of the tuple
returned from split, the filename.

102

5 os.path also contains a function splitext, which splits a filename and returns a tuple
containing the filename and the file extension. You use the same technique to assign each
of them to separate variables.

Example 6.18. Listing Directories

> os.listdir("c:\\music_singles\\") 1

[’a_time_long_forgotten_con.mp3’, ’hellraiser.mp3’,
’kairo.mp3’, ’long_way_home1.mp3’, ’sidewinder.mp3’,
’spinning.mp3’]
> dirname = "c:\\"
> os.listdir(dirname) 2

[’AUTOEXEC.BAT’, ’boot.ini’, ’CONFIG.SYS’, ’cygwin’,
’docbook’, ’Documents and Settings’, ’Incoming’, ’Inetpub’, ’IO.SYS’,
’MSDOS.SYS’, ’Music’, ’NTDETECT.COM’, ’ntldr’, ’pagefile.sys’,
’Program Files’, ’Python20’, ’RECYCLER’,
’System Volume Information’, ’TEMP’, ’WINNT’]
> [f for f in os.listdir(dirname)
... if os.path.isfile(os.path.join(dirname, f))] 3

[’AUTOEXEC.BAT’, ’boot.ini’, ’CONFIG.SYS’, ’IO.SYS’, ’MSDOS.SYS’,
’NTDETECT.COM’, ’ntldr’, ’pagefile.sys’]
> [f for f in os.listdir(dirname)
... if os.path.isdir(os.path.join(dirname, f))] 4

[’cygwin’, ’docbook’, ’Documents and Settings’, ’Incoming’,
’Inetpub’, ’Music’, ’Program Files’, ’Python20’, ’RECYCLER’,
’System Volume Information’, ’TEMP’, ’WINNT’]

1 The listdir function takes a pathname and returns a list of the contents of the directory.

2 listdir returns both files and folders, with no indication of which is which.

3 You can use list filtering and the isfile function of the os.path module to separate
the files from the folders. isfile takes a pathname and returns 1 if the path represents
a file, and 0 otherwise. Here you’re using os.path.join to ensure a full pathname, but
isfile also works with a partial path, relative to the current working directory. You can
use os.getcwd() to get the current working directory.

4 os.path also has a isdir function which returns 1 if the path represents a directory, and
0 otherwise. You can use this to get a list of the subdirectories within a directory.

Example 6.19. Listing Directories in fileinfo.py

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)

for f in os.listdir(directory)] 1 2

103

fileList = [os.path.join(directory, f)
for f in fileList
if os.path.splitext(f)[1] in fileExtList] 3 4 5

1 os.listdir(directory) returns a list of all the files and folders in directory.

2 Iterating through the list with f, you use os.path.normcase(f) to normalize the case ac-
cording to operating system defaults. normcase is a useful little function that compensates
for case-insensitive operating systems that think that mahadeva.mp3 and mahadeva.MP3
are the same file. For instance, on Windows and Mac OS, normcase will convert the entire
filename to lowercase; on UNIX-compatible systems, it will return the filename unchanged.

3 Iterating through the normalized list with f again, you use os.path.splitext(f) to
split each filename into name and extension.

4 For each file, you see if the extension is in the list of file extensions you care about (file-
ExtList, which was passed to the listDirectory function).

5 For each file you care about, you use os.path.join(directory, f) to construct the full
pathname of the file, and return a list of the full pathnames.

Whenever possible, you should use the functions in os and os.path for file, directory, and
path manipulations. These modules are wrappers for platform-specific modules, so functions
like os.path.split work on UNIX, Windows, Mac OS, and any other platform supported by
Python.

There is one other way to get the contents of a directory. It’s very powerful, and it uses the sort
of wildcards that you may already be familiar with from working on the command line.

Example 6.20. Listing Directories with glob

> os.listdir("c:\\music_singles\\") 1

[’a_time_long_forgotten_con.mp3’, ’hellraiser.mp3’,
’kairo.mp3’, ’long_way_home1.mp3’, ’sidewinder.mp3’,
’spinning.mp3’]
> import glob
> glob.glob(’c:\\music_singles*.mp3’) 2

[’c:\\music_singles\\a_time_long_forgotten_con.mp3’,
’c:\\music_singles\\hellraiser.mp3’,
’c:\\music_singles\\kairo.mp3’,
’c:\\music_singles\\long_way_home1.mp3’,
’c:\\music_singles\\sidewinder.mp3’,
’c:\\music_singles\\spinning.mp3’]
> glob.glob(’c:\\music_singles\\s*.mp3’) 3

104

[’c:\\music_singles\\sidewinder.mp3’,
’c:\\music_singles\\spinning.mp3’]
> glob.glob(’c:\\music**.mp3’) 4

1 As you saw earlier, os.listdir simply takes a directory path and lists all files and direc-
tories in that directory.

2 The glob module, on the other hand, takes a wildcard and returns the full path of all files
and directories matching the wildcard. Here the wildcard is a directory path plus "*.mp3",
which will match all .mp3 files. Note that each element of the returned list already includes
the full path of the file.

3 If you want to find all the files in a specific directory that start with "s" and end with
".mp3", you can do that too.

4 Now consider this scenario: you have a music directory, with several subdirectories within
it, with .mp3 files within each subdirectory. You can get a list of all of those with a single
call to glob, by using two wildcards at once. One wildcard is the "*.mp3" (to match .mp3
files), and one wildcard is within the directory path itself, to match any subdirectory within
c:\music. That’s a crazy amount of power packed into one deceptively simple-looking
function!

Further Reading on the os Module

• Python Knowledge Base answers questions about the os module.

• Python Library Reference documents the os module and the os.path module.

6.6 Putting It All Together

Once again, all the dominoes are in place. You’ve seen how each line of code
works. Now let’s step back and see how it all fits together.

Example 6.21. listDirectory

def listDirectory(directory, fileExtList): 1

"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)

for f in os.listdir(directory)]
fileList = [os.path.join(directory, f)

for f in fileList
if os.path.splitext(f)[1] in fileExtList] 2

def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]): 3

"get file info class from filename extension"

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

105

subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:] 4

return hasattr(module, subclass) and getattr(module, subclass) or FileInfo 5

return [getFileInfoClass(f)(f) for f in fileList] 6

1 listDirectory is the main attraction of this entire module. It takes a directory (like
c:\music_singles\ in my case) and a list of interesting file extensions (like [’.mp3’]),
and it returns a list of class instances that act like dictionaries that contain metadata about
each interesting file in that directory. And it does it in just a few straightforward lines of
code.

2 As you saw in the previous section, this line of code gets a list of the full pathnames of
all the files in directory that have an interesting file extension (as specified by file-
ExtList).

3 Old-school Pascal programmers may be familiar with them, but most people give me a
blank stare when I tell them that Python supports nested functions -- literally, a function
within a function. The nested function getFileInfoClass can be called only from the
function in which it is defined, listDirectory. As with any other function, you don’t
need an interface declaration or anything fancy; just define the function and code it.

4 Now that you’ve seen the os module, this line should make more sense. It gets the exten-
sion of the file (os.path.splitext(filename)[1]), forces it to uppercase (.upper()),
slices off the dot ([1:]), and constructs a class name out of it with string formatting. So
c:\music\ap\mahadeva.mp3 becomes .mp3 becomes .MP3 becomes MP3 becomes MP3FileInfo.

5 Having constructed the name of the handler class that would handle this file, you check
to see if that handler class actually exists in this module. If it does, you return the class,
otherwise you return the base class FileInfo. This is a very important point: this function
returns a class. Not an instance of a class, but the class itself.

6 For each file in the “interesting files” list (fileList), you call getFileInfoClass with
the filename (f). Calling getFileInfoClass(f) returns a class; you don’t know exactly
which class, but you don’t care. You then create an instance of this class (whatever it is) and
pass the filename (f again), to the __init__ method. As you saw earlier in this chapter,
the __init__ method of FileInfo sets self["name"], which triggers __setitem__,
which is overridden in the descendant (MP3FileInfo) to parse the file appropriately to
pull out the file’s metadata. You do all that for each interesting file and return a list of the
resulting instances.

Note that listDirectory is completely generic. It doesn’t know ahead of time which types
of files it will be getting, or which classes are defined that could potentially handle those files.
It inspects the directory for the files to process, and then introspects its own module to see
what special handler classes (like MP3FileInfo) are defined. You can extend this program to

106

handle other types of files simply by defining an appropriately-named class: HTMLFileInfo
for HTML files, DOCFileInfo for Word .doc files, and so forth. listDirectory will handle
them all, without modification, by handing off the real work to the appropriate classes and
collating the results.

6.7 Summary

The fileinfo.py program introduced in Chapter 5 should now make perfect
sense.

"""Framework for getting filetype-specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key-value pairs for each piece of metadata.

import fileinfo
info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")
print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):

...

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.
"""
import os
import sys
from UserDict import UserDict

def stripnulls(data):
"strip whitespace and nulls"
return data.replace("\00", "").strip()

class FileInfo(UserDict):
"store file metadata"
def __init__(self, filename=None):

UserDict.__init__(self)
self["name"] = filename

class MP3FileInfo(FileInfo):
"store ID3v1.0 MP3 tags"
tagDataMap = {"title" : (3, 33, stripnulls),

"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),

107

"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

def __parse(self, filename):
"parse ID3v1.0 tags from MP3 file"
self.clear()
try:

fsock = open(filename, "rb", 0)
try:

fsock.seek(-128, 2)
tagdata = fsock.read(128)

finally:
fsock.close()

if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items():

self[tag] = parseFunc(tagdata[start:end])
except IOError:

pass

def __setitem__(self, key, item):
if key == "name" and item:

self.__parse(item)
FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)

for f in os.listdir(directory)]
fileList = [os.path.join(directory, f)

for f in fileList
if os.path.splitext(f)[1] in fileExtList]

def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or FileInfo

return [getFileInfoClass(f)(f) for f in fileList]

if __name__ == "__main__":
for info in listDirectory("/music/_singles/", [".mp3"]):

print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
print

<highlights> Before diving into the next chapter, make sure you’re comfortable doing the fol-
lowing things:

• Catching exceptions with try...except

• Protecting external resources with try...finally

108

• Reading from files

• Assigning multiple values at once in a for loop

• Using the os module for all your cross-platform file manipulation needs

• Dynamically instantiating classes of unknown type by treating classes as objects and pass-
ing them around

</highlights>

109

7 Regular Expressions

Regular expressions are a powerful and standardized way of searching, replac-
ing, and parsing text with complex patterns of characters. If you’ve used regular
expressions in other languages (like Perl), the syntax will be very familiar, and
you get by just reading the summary of the re module to get an overview of the
available functions and their arguments.

7.1 Diving In

Strings have methods for searching (index, find, and count), replacing (replace), and pars-
ing (split), but they are limited to the simplest of cases. The search methods look for a single,
hard-coded substring, and they are always case-sensitive. To do case-insensitive searches of a
string s, you must call s.lower() or s.upper() and make sure your search strings are the
appropriate case to match. The replace and split methods have the same limitations.

If what you’re trying to do can be accomplished with string functions, you should
use them. They’re fast and simple and easy to read, and there’s a lot to be said for
fast, simple, readable code. But if you find yourself using a lot of different string
functions with if statements to handle special cases, or if you’re combining them
with split and join and list comprehensions in weird unreadable ways, you
may need to move up to regular expressions.

Although the regular expression syntax is tight and unlike normal code, the result can end
up being more readable than a hand-rolled solution that uses a long chain of string functions.
There are even ways of embedding comments within regular expressions to make them prac-
tically self-documenting.

7.2 Case Study: Street Addresses

This series of examples was inspired by a real-life problem I had in my day job
several years ago, when I needed to scrub and standardize street addresses ex-
ported from a legacy system before importing them into a newer system. (See,
I don’t just make this stuff up; it’s actually useful.) This example shows how I
approached the problem.

Example 7.1. Matching at the End of a String

> s = ’100 NORTH MAIN ROAD’
> s.replace(’ROAD’, ’RD.’) 1

http://www.python.org/doc/current/lib/module-re.html
http://www.python.org/doc/current/lib/module-re.html

110

’100 NORTH MAIN RD.’
> s = ’100 NORTH BROAD ROAD’
> s.replace(’ROAD’, ’RD.’) 2

’100 NORTH BRD. RD.’
> s[:-4] + s[-4:].replace(’ROAD’, ’RD.’) 3

’100 NORTH BROAD RD.’
> import re 4

> re.sub(’ROAD$’, ’RD.’, s) 5 6

’100 NORTH BROAD RD.’

1 My goal is to standardize a street address so that ’ROAD’ is always abbreviated as ’RD.’.
At first glance, I thought this was simple enough that I could just use the string method
replace. After all, all the data was already uppercase, so case mismatches would not be
a problem. And the search string, ’ROAD’, was a constant. And in this deceptively simple
example, s.replace does indeed work.

2 Life, unfortunately, is full of counterexamples, and I quickly discovered this one. The
problem here is that ’ROAD’ appears twice in the address, once as part of the street name
’BROAD’ and once as its own word. The replace method sees these two occurrences and
blindly replaces both of them; meanwhile, I see my addresses getting destroyed.

3 To solve the problem of addresses with more than one ’ROAD’ substring, you could resort
to something like this: only search and replace ’ROAD’ in the last four characters of the
address (s[-4:]), and leave the string alone (s[:-4]). But you can see that this is already
getting unwieldy. For example, the pattern is dependent on the length of the string you’re
replacing (if you were replacing ’STREET’ with ’ST.’, you would need to use s[:-6]
and s[-6:].replace(...)). Would you like to come back in six months and debug this?
I know I wouldn’t.

4 It’s time to move up to regular expressions. In Python, all functionality related to regular
expressions is contained in the re module.

5 Take a look at the first parameter: ’ROAD$’. This is a simple regular expression that
matches ’ROAD’ only when it occurs at the end of a string. The $ means “end of the string”.
(There is a corresponding character, the caret ^, which means “beginning of the string”.)

6 Using the re.sub function, you search the string s for the regular expression ’ROAD$’
and replace it with ’RD.’. This matches the ROAD at the end of the string s, but does not
match the ROAD that’s part of the word BROAD, because that’s in the middle of s.

Continuing with my story of scrubbing addresses, I soon discovered that the previous ex-
ample, matching ’ROAD’ at the end of the address, was not good enough, because not all
addresses included a street designation at all; some just ended with the street name. Most of
the time, I got away with it, but if the street name was ’BROAD’, then the regular expression

111

would match ’ROAD’ at the end of the string as part of the word ’BROAD’, which is not what I
wanted.

Example 7.2. Matching Whole Words

> s = ’100 BROAD’
> re.sub(’ROAD$’, ’RD.’, s)
’100 BRD.’
> re.sub(’\\bROAD$’, ’RD.’, s) 1

’100 BROAD’
> re.sub(r’\bROAD$’, ’RD.’, s) 2

’100 BROAD’
> s = ’100 BROAD ROAD APT. 3’
> re.sub(r’\bROAD$’, ’RD.’, s) 3

’100 BROAD ROAD APT. 3’
> re.sub(r’\bROAD\b’, ’RD.’, s) 4

’100 BROAD RD. APT 3’

1 What I really wanted was to match ’ROAD’ when it was at the end of the string and it was
its own whole word, not a part of some larger word. To express this in a regular expression,
you use \b, which means “a word boundary must occur right here”. In Python, this is
complicated by the fact that the ’\’ character in a string must itself be escaped. This is
sometimes referred to as the backslash plague, and it is one reason why regular expressions
are easier in Perl than in Python. On the down side, Perl mixes regular expressions with
other syntax, so if you have a bug, it may be hard to tell whether it’s a bug in syntax or a
bug in your regular expression.

2 To work around the backslash plague, you can use what is called a raw string, by prefixing
the string with the letter r. This tells Python that nothing in this string should be escaped;
’\t’ is a tab character, but r’\t’ is really the backslash character \ followed by the letter t.
I recommend always using raw strings when dealing with regular expressions; otherwise,
things get too confusing too quickly (and regular expressions get confusing quickly enough
all by themselves).

3 *sigh* Unfortunately, I soon found more cases that contradicted my logic. In this case, the
street address contained the word ’ROAD’ as a whole word by itself, but it wasn’t at the
end, because the address had an apartment number after the street designation. Because
’ROAD’ isn’t at the very end of the string, it doesn’t match, so the entire call to re.sub ends
up replacing nothing at all, and you get the original string back, which is not what you
want.

4 To solve this problem, I removed the $ character and added another \b. Now the reg-
ular expression reads “match ’ROAD’ when it’s a whole word by itself anywhere in the
string,” whether at the end, the beginning, or somewhere in the middle.

112

7.3 Case Study: Roman Numerals
You’ve most likely seen Roman numerals, even if you didn’t recognize them. You
may have seen them in copyrights of old movies and television shows (“Copy-
right MCMXLVI” instead of “Copyright 1946”), or on the dedication walls of li-
braries or universities (“established MDCCCLXXXVIII” instead of “established 1888”).
You may also have seen them in outlines and bibliographical references. It’s a
system of representing numbers that really does date back to the ancient Roman
empire (hence the name).

In Roman numerals, there are seven characters that are repeated and combined in various
ways to represent numbers.

• I = 1

• V = 5

• X = 10

• L = 50

• C = 100

• D = 500

• M = 1000

The following are some general rules for constructing Roman numerals:

• Characters are additive. I is 1, II is 2, and III is 3. VI is 6 (literally, “5 and 1”), VII is 7,
and VIII is 8.

• The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to
subtract from the next highest fives character. You can’t represent 4 as IIII; instead, it is
represented as IV (“1 less than 5”). The number 40 is written as XL (10 less than 50), 41 as
XLI, 42 as XLII, 43 as XLIII, and then 44 as XLIV (10 less than 50, then 1 less than 5).

• Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9
is IX (1 less than 10), not VIIII (since the I character can not be repeated four times). The
number 90 is XC, 900 is CM.

• The fives characters can not be repeated. The number 10 is always represented as X, never
as VV. The number 100 is always C, never LL.

• Roman numerals are always written highest to lowest, and read left to right, so the order
the of characters matters very much. DC is 600; CD is a completely different number (400,

113

100 less than 500). CI is 101; IC is not even a valid Roman numeral (because you can’t
subtract 1 directly from 100; you would need to write it as XCIX, for 10 less than 100, then
1 less than 10).

7.3.1 Checking for Thousands

What would it take to validate that an arbitrary string is a valid Roman numeral? Let’s take it
one digit at a time. Since Roman numerals are always written highest to lowest, let’s start with
the highest: the thousands place. For numbers 1000 and higher, the thousands are represented
by a series of M characters.

Example 7.3. Checking for Thousands

> import re
> pattern = ’^M?M?M?$’ 1

> re.search(pattern, ’M’) 2

<SRE_Match object at 0106FB58>
> re.search(pattern, ’MM’) 3

<SRE_Match object at 0106C290>
> re.search(pattern, ’MMM’) 4

<SRE_Match object at 0106AA38>
> re.search(pattern, ’MMMM’) 5

> re.search(pattern, ’’) 6

<SRE_Match object at 0106F4A8>

1 This pattern has three parts:

• ^ to match what follows only at the beginning of the string. If this were not specified,
the pattern would match no matter where the M characters were, which is not what you
want. You want to make sure that the M characters, if they’re there, are at the beginning
of the string.

• M? to optionally match a single M character. Since this is repeated three times, you’re
matching anywhere from zero to three M characters in a row.

• $ to match what precedes only at the end of the string. When combined with the ^
character at the beginning, this means that the pattern must match the entire string,
with no other characters before or after the M characters.

2 The essence of the re module is the search function, that takes a regular expression (pat-
tern) and a string (’M’) to try to match against the regular expression. If a match is found,
search returns an object which has various methods to describe the match; if no match
is found, search returns None, the Python null value. All you care about at the moment
is whether the pattern matches, which you can tell by just looking at the return value of

114

search. ’M’ matches this regular expression, because the first optional M matches and the
second and third optional M characters are ignored.

3 ’MM’ matches because the first and second optional M characters match and the third M is
ignored.

4 ’MMM’ matches because all three M characters match.

5 ’MMMM’ does not match. All three M characters match, but then the regular expression
insists on the string ending (because of the $ character), and the string doesn’t end yet
(because of the fourth M). So search returns None.

6 Interestingly, an empty string also matches this regular expression, since all the M charac-
ters are optional.

7.3.2 Checking for Hundreds

The hundreds place is more difficult than the thousands, because there are several mutually
exclusive ways it could be expressed, depending on its value.

• 100 = C

• 200 = CC

• 300 = CCC

• 400 = CD

• 500 = D

• 600 = DC

• 700 = DCC

• 800 = DCCC

• 900 = CM

So there are four possible patterns:

• CM

• CD

115

• Zero to three C characters (zero if the hundreds place is 0)

• D, followed by zero to three C characters

The last two patterns can be combined:

• an optional D, followed by zero to three C characters

This example shows how to validate the hundreds place of a Roman numeral.

Example 7.4. Checking for Hundreds

> import re
> pattern = ’^M?M?M?(CM|CD|D?C?C?C?)$’ 1

> re.search(pattern, ’MCM’) 2

<SRE_Match object at 01070390>
> re.search(pattern, ’MD’) 3

<SRE_Match object at 01073A50>
> re.search(pattern, ’MMMCCC’) 4

<SRE_Match object at 010748A8>
> re.search(pattern, ’MCMC’) 5

> re.search(pattern, ’’) 6

<SRE_Match object at 01071D98>

1 This pattern starts out the same as the previous one, checking for the beginning of the
string (^), then the thousands place (M?M?M?). Then it has the new part, in parentheses,
which defines a set of three mutually exclusive patterns, separated by vertical bars: CM,
CD, and D?C?C?C? (which is an optional D followed by zero to three optional C characters).
The regular expression parser checks for each of these patterns in order (from left to right),
takes the first one that matches, and ignores the rest.

2 ’MCM’ matches because the first M matches, the second and third M characters are ignored,
and the CM matches (so the CD and D?C?C?C? patterns are never even considered). MCM is
the Roman numeral representation of 1900.

3 ’MD’ matches because the first M matches, the second and third M characters are ignored,
and the D?C?C?C? pattern matches D (each of the three C characters are optional and are
ignored). MD is the Roman numeral representation of 1500.

4 ’MMMCCC’ matches because all three M characters match, and the D?C?C?C? pattern matches
CCC (the D is optional and is ignored). MMMCCC is the Roman numeral representation of
3300.

5 ’MCMC’ does not match. The first M matches, the second and third M characters are ignored,
and the CM matches, but then the $ does not match because you’re not at the end of the

116

string yet (you still have an unmatched C character). The C does not match as part of the
D?C?C?C? pattern, because the mutually exclusive CM pattern has already matched.

6 Interestingly, an empty string still matches this pattern, because all the M characters are
optional and ignored, and the empty string matches the D?C?C?C? pattern where all the
characters are optional and ignored.

Whew! See how quickly regular expressions can get nasty? And you’ve only covered the
thousands and hundreds places of Roman numerals. But if you followed all that, the tens and
ones places are easy, because they’re exactly the same pattern. But let’s look at another way to
express the pattern.

7.4 Using the {n,m} Syntax

In the previous section, you were dealing with a pattern where the same char-
acter could be repeated up to three times. There is another way to express this
in regular expressions, which some people find more readable. First look at the
method we already used in the previous example.

Example 7.5. The Old Way: Every Character Optional

> import re
> pattern = ’^M?M?M?$’
> re.search(pattern, ’M’) 1

<_sre.SRE_Match object at 0x008EE090>
> pattern = ’^M?M?M?$’
> re.search(pattern, ’MM’) 2

<_sre.SRE_Match object at 0x008EEB48>
> pattern = ’^M?M?M?$’
> re.search(pattern, ’MMM’) 3

<_sre.SRE_Match object at 0x008EE090>
> re.search(pattern, ’MMMM’) 4

>

1 This matches the start of the string, and then the first optional M, but not the second and
third M (but that’s okay because they’re optional), and then the end of the string.

2 This matches the start of the string, and then the first and second optional M, but not the
third M (but that’s okay because it’s optional), and then the end of the string.

3 This matches the start of the string, and then all three optional M, and then the end of the
string.

117

4 This matches the start of the string, and then all three optional M, but then does not match
the the end of the string (because there is still one unmatched M), so the pattern does not
match and returns None.

Example 7.6. The New Way: From n o m

> pattern = ’^M{0,3}$’ 1

> re.search(pattern, ’M’) 2

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MM’) 3

<_sre.SRE_Match object at 0x008EE090>
> re.search(pattern, ’MMM’) 4

<_sre.SRE_Match object at 0x008EEDA8>
> re.search(pattern, ’MMMM’) 5

>

1 This pattern says: “Match the start of the string, then anywhere from zero to three M char-
acters, then the end of the string.” The 0 and 3 can be any numbers; if you want to match at
least one but no more than three M characters, you could say M{1,3}.

2 This matches the start of the string, then one M out of a possible three, then the end of the
string.

3 This matches the start of the string, then two M out of a possible three, then the end of the
string.

4 This matches the start of the string, then three M out of a possible three, then the end of the
string.

5 This matches the start of the string, then three M out of a possible three, but then does not
match the end of the string. The regular expression allows for up to only three M characters
before the end of the string, but you have four, so the pattern does not match and returns
None.

There is no way to programmatically determine that two regular expressions are equivalent.
The best you can do is write a lot of test cases to make sure they behave the same way on all
relevant inputs. You’ll talk more about writing test cases later in this book.

118

7.4.1 Checking for Tens and Ones

Now let’s expand the Roman numeral regular expression to cover the tens and ones place. This
example shows the check for tens.

Example 7.7. Checking for Tens

> pattern = ’^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)$’
> re.search(pattern, ’MCMXL’) 1

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MCML’) 2

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MCMLX’) 3

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MCMLXXX’) 4

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MCMLXXXX’) 5

>

1 This matches the start of the string, then the first optional M, then CM, then XL, then the end
of the string. Remember, the (A|B|C) syntax means “match exactly one of A, B, or C”. You
match XL, so you ignore the XC and L?X?X?X? choices, and then move on to the end of the
string. MCML is the Roman numeral representation of 1940.

2 This matches the start of the string, then the first optional M, then CM, then L?X?X?X?. Of
the L?X?X?X?, it matches the L and skips all three optional X characters. Then you move to
the end of the string. MCML is the Roman numeral representation of 1950.

3 This matches the start of the string, then the first optional M, then CM, then the optional L
and the first optional X, skips the second and third optional X, then the end of the string.
MCMLX is the Roman numeral representation of 1960.

4 This matches the start of the string, then the first optional M, then CM, then the optional
L and all three optional X characters, then the end of the string. MCMLXXX is the Roman
numeral representation of 1980.

5 This matches the start of the string, then the first optional M, then CM, then the optional L
and all three optional X characters, then fails to match the end of the string because there
is still one more X unaccounted for. So the entire pattern fails to match, and returns None.
MCMLXXXX is not a valid Roman numeral.

The expression for the ones place follows the same pattern. I’ll spare you the details and show
you the end result.

>>> pattern = ’^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$’

119

So what does that look like using this alternate {n,m} syntax? This example shows the new
syntax.

Example 7.8. Validating Roman Numerals with {n,m}

> pattern = ’^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$’
> re.search(pattern, ’MDLV’) 1

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MMDCLXVI’) 2

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MMMMDCCCLXXXVIII’) 3

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’I’) 4

<_sre.SRE_Match object at 0x008EEB48>

1 This matches the start of the string, then one of a possible four M characters, then D?C{0,3}.
Of that, it matches the optional D and zero of three possible C characters. Moving on, it
matches L?X{0,3} by matching the optional L and zero of three possible X characters. Then
it matches V?I{0,3} by matching the optional V and zero of three possible I characters,
and finally the end of the string. MDLV is the Roman numeral representation of 1555.

2 This matches the start of the string, then two of a possible four M characters, then the
D?C{0,3} with a D and one of three possible C characters; then L?X{0,3} with an L and
one of three possible X characters; then V?I{0,3} with a V and one of three possible I
characters; then the end of the string. MMDCLXVI is the Roman numeral representation of
2666.

3 This matches the start of the string, then four out of four M characters, then D?C{0,3} with
a D and three out of three C characters; then L?X{0,3} with an L and three out of three X
characters; then V?I{0,3} with a V and three out of three I characters; then the end of
the string. MMMMDCCCLXXXVIII is the Roman numeral representation of 3888, and it’s the
longest Roman numeral you can write without extended syntax.

4 Watch closely. (I feel like a magician. “Watch closely, kids, I’m going to pull a rabbit out
of my hat.”) This matches the start of the string, then zero out of four M, then matches
D?C{0,3} by skipping the optional D and matching zero out of three C, then matches
L?X{0,3} by skipping the optional L and matching zero out of three X, then matches
V?I{0,3} by skipping the optional V and matching one out of three I. Then the end of
the string. Whoa.

If you followed all that and understood it on the first try, you’re doing better than I did. Now
imagine trying to understand someone else’s regular expressions, in the middle of a critical
function of a large program. Or even imagine coming back to your own regular expressions a
few months later. I’ve done it, and it’s not a pretty sight.

120

In the next section you’ll explore an alternate syntax that can help keep your expressions main-
tainable.

7.5 Verbose Regular Expressions

So far you’ve just been dealing with what I’ll call “compact” regular expressions.
As you’ve seen, they are difficult to read, and even if you figure out what one
does, that’s no guarantee that you’ll be able to understand it six months later.
What you really need is inline documentation.

Python allows you to do this with something called verbose regular expressions. A verbose
regular expression is different from a compact regular expression in two ways:

• Whitespace is ignored. Spaces, tabs, and carriage returns are not matched as spaces, tabs,
and carriage returns. They’re not matched at all. (If you want to match a space in a verbose
regular expression, you’ll need to escape it by putting a backslash in front of it.)

• Comments are ignored. A comment in a verbose regular expression is just like a comment
in Python code: it starts with a # character and goes until the end of the line. In this case
it’s a comment within a multi-line string instead of within your source code, but it works
the same way.

This will be more clear with an example. Let’s revisit the compact regular expression you’ve
been working with, and make it a verbose regular expression. This example shows how.

Example 7.9. Regular Expressions with Inline Comments

> pattern = """
^ # beginning of string
M{0,4} # thousands - 0 to 4 M’s
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C’s),

or 500-800 (D, followed by 0 to 3 C’s)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X’s),

or 50-80 (L, followed by 0 to 3 X’s)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I’s),

or 5-8 (V, followed by 0 to 3 I’s)
$ # end of string
"""

> re.search(pattern, ’M’, re.VERBOSE) 1

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MCMLXXXIX’, re.VERBOSE) 2

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’MMMMDCCCLXXXVIII’, re.VERBOSE) 3

<_sre.SRE_Match object at 0x008EEB48>
> re.search(pattern, ’M’) 4

121

1 The most important thing to remember when using verbose regular expressions is that
you need to pass an extra argument when working with them: re.VERBOSE is a constant
defined in the re module that signals that the pattern should be treated as a verbose reg-
ular expression. As you can see, this pattern has quite a bit of whitespace (all of which is
ignored), and several comments (all of which are ignored). Once you ignore the whitespace
and the comments, this is exactly the same regular expression as you saw in the previous
section, but it’s a lot more readable.

2 This matches the start of the string, then one of a possible four M, then CM, then L and three
of a possible three X, then IX, then the end of the string.

3 This matches the start of the string, then four of a possible four M, then D and three of a
possible three C, then L and three of a possible three X, then V and three of a possible three
I, then the end of the string.

4 This does not match. Why? Because it doesn’t have the re.VERBOSE flag, so the re.search
function is treating the pattern as a compact regular expression, with significant whitespace
and literal hash marks. Python can’t auto-detect whether a regular expression is verbose or
not. Python assumes every regular expression is compact unless you explicitly state that it
is verbose.

7.6 Case study: Parsing Phone Numbers

So far you’ve concentrated on matching whole patterns. Either the pattern matches,
or it doesn’t. But regular expressions are much more powerful than that. When
a regular expression does match, you can pick out specific pieces of it. You can
find out what matched where.

This example came from another real-world problem I encountered, again from a previous
day job. The problem: parsing an American phone number. The client wanted to be able to
enter the number free-form (in a single field), but then wanted to store the area code, trunk,
number, and optionally an extension separately in the company’s database. I scoured the Web
and found many examples of regular expressions that purported to do this, but none of them
were permissive enough.

Here are the phone numbers I needed to be able to accept:

• 800-555-1212

• 800 555 1212

• 800.555.1212

122

• (800) 555-1212

• 1-800-555-1212

• 800-555-1212-1234

• 800-555-1212x1234

• 800-555-1212 ext. 1234

• work 1-(800) 555.1212 #1234

Quite a variety! In each of these cases, I need to know that the area code was 800, the trunk
was 555, and the rest of the phone number was 1212. For those with an extension, I need to
know that the extension was 1234.

Let’s work through developing a solution for phone number parsing. This example shows the
first step.

Example 7.10. Finding Numbers

> phonePattern = re.compile(r’^(\d{3})-(\d{3})-(\d{4})$’) 1

> phonePattern.search(’800-555-1212’).groups() 2

(’800’, ’555’, ’1212’)
> phonePattern.search(’800-555-1212-1234’) 3

>

1 Always read regular expressions from left to right. This one matches the beginning of
the string, and then (\d{3}). What’s \d{3}? Well, the {3} means “match exactly three
numeric digits”; it’s a variation on the {n,m} syntax you saw earlier. \d means “any nu-
meric digit” (0 through 9). Putting it in parentheses means “match exactly three numeric
digits, and then remember them as a group that I can ask for later”. Then match a literal
hyphen. Then match another group of exactly three digits. Then another literal hyphen.
Then another group of exactly four digits. Then match the end of the string.

2 To get access to the groups that the regular expression parser remembered along the way,
use the groups() method on the object that the search function returns. It will return a
tuple of however many groups were defined in the regular expression. In this case, you
defined three groups, one with three digits, one with three digits, and one with four digits.

3 This regular expression is not the final answer, because it doesn’t handle a phone number
with an extension on the end. For that, you’ll need to expand the regular expression.

123

Example 7.11. Finding the Extension

> phonePattern = re.compile(r’^(\d{3})-(\d{3})-(\d{4})-(\d+)$’) 1

> phonePattern.search(’800-555-1212-1234’).groups() 2

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800 555 1212 1234’) 3

>
> phonePattern.search(’800-555-1212’) 4

>

1 This regular expression is almost identical to the previous one. Just as before, you match
the beginning of the string, then a remembered group of three digits, then a hyphen, then a
remembered group of three digits, then a hyphen, then a remembered group of four digits.
What’s new is that you then match another hyphen, and a remembered group of one or
more digits, then the end of the string.

2 The groups() method now returns a tuple of four elements, since the regular expression
now defines four groups to remember.

3 Unfortunately, this regular expression is not the final answer either, because it assumes
that the different parts of the phone number are separated by hyphens. What if they’re
separated by spaces, or commas, or dots? You need a more general solution to match
several different types of separators.

4 Oops! Not only does this regular expression not do everything you want, it’s actually a
step backwards, because now you can’t parse phone numbers without an extension. That’s
not what you wanted at all; if the extension is there, you want to know what it is, but if it’s
not there, you still want to know what the different parts of the main number are.

The next example shows the regular expression to handle separators between the different
parts of the phone number.

Example 7.12. Handling Different Separators

> phonePattern = re.compile(r’^(\d{3})\D+(\d{3})\D+(\d{4})\D+(\d+)$’) 1

> phonePattern.search(’800 555 1212 1234’).groups() 2

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800-555-1212-1234’).groups() 3

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’80055512121234’) 4

>
> phonePattern.search(’800-555-1212’) 5

>

124

1 Hang on to your hat. You’re matching the beginning of the string, then a group of three
digits, then \D+. What the heck is that? Well, \D matches any character except a numeric
digit, and + means “1 or more”. So \D+ matches one or more characters that are not digits.
This is what you’re using instead of a literal hyphen, to try to match different separators.

2 Using \D+ instead of - means you can now match phone numbers where the parts are
separated by spaces instead of hyphens.

3 Of course, phone numbers separated by hyphens still work too.

4 Unfortunately, this is still not the final answer, because it assumes that there is a separator
at all. What if the phone number is entered without any spaces or hyphens at all?

4 Oops! This still hasn’t fixed the problem of requiring extensions. Now you have two
problems, but you can solve both of them with the same technique.

The next example shows the regular expression for handling phone numbers without separa-
tors.

Example 7.13. Handling Numbers Without Separators

> phonePattern = re.compile(r’^(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$’) 1

> phonePattern.search(’80055512121234’).groups() 2

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800.555.1212 x1234’).groups() 3

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800-555-1212’).groups() 4

(’800’, ’555’, ’1212’, ’’)
> phonePattern.search(’(800)5551212 x1234’) 5

>

1 The only change you’ve made since that last step is changing all the + to *. Instead of \D+
between the parts of the phone number, you now match on \D*. Remember that + means
“1 or more”? Well, * means “zero or more”. So now you should be able to parse phone
numbers even when there is no separator character at all.

2 Lo and behold, it actually works. Why? You matched the beginning of the string, then a
remembered group of three digits (800), then zero non-numeric characters, then a remem-
bered group of three digits (555), then zero non-numeric characters, then a remembered
group of four digits (1212), then zero non-numeric characters, then a remembered group
of an arbitrary number of digits (1234), then the end of the string.

3 Other variations work now too: dots instead of hyphens, and both a space and an x before
the extension.

125

4 Finally, you’ve solved the other long-standing problem: extensions are optional again. If
no extension is found, the groups() method still returns a tuple of four elements, but the
fourth element is just an empty string.

5 I hate to be the bearer of bad news, but you’re not finished yet. What’s the problem here?
There’s an extra character before the area code, but the regular expression assumes that the
area code is the first thing at the beginning of the string. No problem, you can use the same
technique of “zero or more non-numeric characters” to skip over the leading characters
before the area code.

The next example shows how to handle leading characters in phone numbers.

Example 7.14. Handling Leading Characters

> phonePattern = re.compile(r’^\D*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$’) 1

> phonePattern.search(’(800)5551212 ext. 1234’).groups() 2

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800-555-1212’).groups() 3

(’800’, ’555’, ’1212’, ’’)
> phonePattern.search(’work 1-(800) 555.1212 #1234’) 4

>

1 This is the same as in the previous example, except now you’re matching \D*, zero or
more non-numeric characters, before the first remembered group (the area code). Notice
that you’re not remembering these non-numeric characters (they’re not in parentheses).
If you find them, you’ll just skip over them and then start remembering the area code
whenever you get to it.

2 You can successfully parse the phone number, even with the leading left parenthesis before
the area code. (The right parenthesis after the area code is already handled; it’s treated as a
non-numeric separator and matched by the \D* after the first remembered group.)

3 Just a sanity check to make sure you haven’t broken anything that used to work. Since
the leading characters are entirely optional, this matches the beginning of the string, then
zero non-numeric characters, then a remembered group of three digits (800), then one non-
numeric character (the hyphen), then a remembered group of three digits (555), then one
non-numeric character (the hyphen), then a remembered group of four digits (1212), then
zero non-numeric characters, then a remembered group of zero digits, then the end of the
string.

4 This is where regular expressions make me want to gouge my eyes out with a blunt object.
Why doesn’t this phone number match? Because there’s a 1 before the area code, but you
assumed that all the leading characters before the area code were non-numeric characters
(\D*). Aargh.

126

Let’s back up for a second. So far the regular expressions have all matched from the beginning
of the string. But now you see that there may be an indeterminate amount of stuff at the
beginning of the string that you want to ignore. Rather than trying to match it all just so you
can skip over it, let’s take a different approach: don’t explicitly match the beginning of the
string at all. This approach is shown in the next example.

Example 7.15. Phone Number, Wherever I May Find Ye

> phonePattern = re.compile(r’(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$’) 1

> phonePattern.search(’work 1-(800) 555.1212 #1234’).groups() 2

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800-555-1212’) 3

(’800’, ’555’, ’1212’, ’’)
> phonePattern.search(’80055512121234’) 4

(’800’, ’555’, ’1212’, ’1234’)

1 Note the lack of ^ in this regular expression. You are not matching the beginning of the
string anymore. There’s nothing that says you need to match the entire input with your
regular expression. The regular expression engine will do the hard work of figuring out
where the input string starts to match, and go from there.

2 Now you can successfully parse a phone number that includes leading characters and a
leading digit, plus any number of any kind of separators around each part of the phone
number.

3 Sanity check. this still works.

4 That still works too.

See how quickly a regular expression can get out of control? Take a quick glance at any of the
previous iterations. Can you tell the difference between one and the next?

While you still understand the final answer (and it is the final answer; if you’ve discovered a
case it doesn’t handle, I don’t want to know about it), let’s write it out as a verbose regular
expression, before you forget why you made the choices you made.

Example 7.16. Parsing Phone Numbers (Final Version)

> phonePattern = re.compile(r’’’
don’t match beginning of string, number can start anywhere

(\d{3}) # area code is 3 digits (e.g. ’800’)
\D* # optional separator is any number of non-digits
(\d{3}) # trunk is 3 digits (e.g. ’555’)
\D* # optional separator
(\d{4}) # rest of number is 4 digits (e.g. ’1212’)

127

\D* # optional separator
(\d*) # extension is optional and can be any number of digits
$ # end of string
’’’, re.VERBOSE)

> phonePattern.search(’work 1-(800) 555.1212 #1234’).groups() 1

(’800’, ’555’, ’1212’, ’1234’)
> phonePattern.search(’800-555-1212’) 2

(’800’, ’555’, ’1212’, ’’)

1 Other than being spread out over multiple lines, this is exactly the same regular expression
as the last step, so it’s no surprise that it parses the same inputs.

2 Final sanity check. Yes, this still works. You’re done.

Further Reading on Regular Expressions

• Regular Expression HOWTO teaches about regular expressions and how to use them in
Python.

• Python Library Reference summarizes the re module.

7.7 Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In
other words, even though you’re completely overwhelmed by them now, believe
me, you ain’t seen nothing yet.

You should now be familiar with the following techniques:

• ^ matches the beginning of a string.

• $ matches the end of a string.

• \b matches a word boundary.

• \d matches any numeric digit.

• \D matches any non-numeric character.

• x? matches an optional x character (in other words, it matches an x zero or one times).

• x* matches x zero or more times.

• x+ matches x one or more times.

http://py-howto.sourceforge.net/regex/regex.html
http://py-howto.sourceforge.net/regex/regex.html
http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://www.python.org/doc/current/lib/module-re.html

128

• x{n,m} matches an x character at least n times, but not more than m times.

• (a|b|c) matches either a or b or c.

• (x) in general is a remembered group. You can get the value of what matched by using the
groups() method of the object returned by re.search.

Regular expressions are extremely powerful, but they are not the correct solution for every
problem. You should learn enough about them to know when they are appropriate, when they
will solve your problems, and when they will cause more problems than they solve.

“Some people, when confronted with a problem, think “I know, I’ll use regular expres-
sions.” Now they have two problems.”

129

8 HTML Processing

8.1 Diving in

I often see questions on comp.lang.python like “How can I list all the [headers|images|links]
in my HTML document?” “How do I parse/translate/munge the text of my
HTML document but leave the tags alone?” “How can I add/remove/quote at-
tributes of all my HTML tags at once?” This chapter will answer all of these
questions.

Here is a complete, working Python program in two parts. The first part, BaseHTMLProces-
sor.py, is a generic tool to help you process HTML files by walking through the tags and text
blocks. The second part, dialect.py, is an example of how to use BaseHTMLProcessor.py
to translate the text of an HTML document but leave the tags alone. Read the doc strings
and comments to get an overview of what’s going on. Most of it will seem like black magic,
because it’s not obvious how any of these class methods ever get called. Don’t worry, all will
be revealed in due time.

Example 8.1. BaseHTMLProcessor.py

If you have not already done so, you can download this and other examples used in this book.

from sgmllib import SGMLParser
import htmlentitydefs

class BaseHTMLProcessor(SGMLParser):
def reset(self):

extend (called by SGMLParser.__init__)
self.pieces = []
SGMLParser.reset(self)

def unknown_starttag(self, tag, attrs):
called for each start tag
attrs is a list of (attr, value) tuples
e.g. for <pre class="screen">, tag="pre", attrs=[("class", "screen")]
Ideally we would like to reconstruct original tag and attributes, but
we may end up quoting attribute values that weren’t quoted in the source
document, or we may change the type of quotes around the attribute value
(single to double quotes).
Note that improperly embedded non-HTML code (like client-side Javascript)
may be parsed incorrectly by the ancestor, causing runtime script errors.
All non-HTML code must be enclosed in HTML comment tags (<!-- code -->)
to ensure that it will pass through this parser unaltered (in handle_comment).
strattrs = "".join([’ %s="%s"’ % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

130

def unknown_endtag(self, tag):
called for each end tag, e.g. for </pre>, tag will be "pre"
Reconstruct the original end tag.
self.pieces.append("</%(tag)s>" % locals())

def handle_charref(self, ref):
called for each character reference, e.g. for " ", ref will be "160"
Reconstruct the original character reference.
self.pieces.append("&#%(ref)s;" % locals())

def handle_entityref(self, ref):
called for each entity reference, e.g. for "©", ref will be "copy"
Reconstruct the original entity reference.
self.pieces.append("&%(ref)s" % locals())
standard HTML entities are closed with a semicolon; other entities are not
if htmlentitydefs.entitydefs.has_key(ref):

self.pieces.append(";")

def handle_data(self, text):
called for each block of plain text, i.e. outside of any tag and
not containing any character or entity references
Store the original text verbatim.
self.pieces.append(text)

def handle_comment(self, text):
called for each HTML comment, e.g. <!-- insert Javascript code here -->
Reconstruct the original comment.
It is especially important that the source document enclose client-side
code (like Javascript) within comments so it can pass through this
processor undisturbed; see comments in unknown_starttag for details.
self.pieces.append("<!--%(text)s-->" % locals())

def handle_pi(self, text):
called for each processing instruction, e.g. <?instruction>
Reconstruct original processing instruction.
self.pieces.append("<?%(text)s>" % locals())

def handle_decl(self, text):
called for the DOCTYPE, if present, e.g.
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
Reconstruct original DOCTYPE
self.pieces.append("<!%(text)s>" % locals())

def output(self):
"""Return processed HTML as a single string"""
return "".join(self.pieces)

131

Example 8.2. dialect.py

import re
from BaseHTMLProcessor import BaseHTMLProcessor

class Dialectizer(BaseHTMLProcessor):
subs = ()

def reset(self):
extend (called from __init__ in ancestor)
Reset all data attributes
self.verbatim = 0
BaseHTMLProcessor.reset(self)

def start_pre(self, attrs):
called for every <pre> tag in HTML source
Increment verbatim mode count, then handle tag like normal
self.verbatim += 1
self.unknown_starttag("pre", attrs)

def end_pre(self):
called for every </pre> tag in HTML source
Decrement verbatim mode count
self.unknown_endtag("pre")
self.verbatim -= 1

def handle_data(self, text):
override
called for every block of text in HTML source
If in verbatim mode, save text unaltered;
otherwise process the text with a series of substitutions
self.pieces.append(self.verbatim and text or self.process(text))

def process(self, text):
called from handle_data
Process text block by performing series of regular expression
substitutions (actual substitions are defined in descendant)
for fromPattern, toPattern in self.subs:

text = re.sub(fromPattern, toPattern, text)
return text

class ChefDialectizer(Dialectizer):
"""convert HTML to Swedish Chef-speak

based on the classic chef.x, copyright (c) 1992, 1993 John Hagerman
"""
subs = ((r’a([nu])’, r’u\1’),

(r’A([nu])’, r’U\1’),
(r’a\B’, r’e’),

132

(r’A\B’, r’E’),
(r’en\b’, r’ee’),
(r’\Bew’, r’oo’),
(r’\Be\b’, r’e-a’),
(r’\be’, r’i’),
(r’\bE’, r’I’),
(r’\Bf’, r’ff’),
(r’\Bir’, r’ur’),
(r’(\w*?)i(\w*?)$’, r’\1ee\2’),
(r’\bow’, r’oo’),
(r’\bo’, r’oo’),
(r’\bO’, r’Oo’),
(r’the’, r’zee’),
(r’The’, r’Zee’),
(r’th\b’, r’t’),
(r’\Btion’, r’shun’),
(r’\Bu’, r’oo’),
(r’\BU’, r’Oo’),
(r’v’, r’f’),
(r’V’, r’F’),
(r’w’, r’w’),
(r’W’, r’W’),
(r’([a-z])[.]’, r’\1. Bork Bork Bork!’))

class FuddDialectizer(Dialectizer):
"""convert HTML to Elmer Fudd-speak"""
subs = ((r’[rl]’, r’w’),

(r’qu’, r’qw’),
(r’th\b’, r’f’),
(r’th’, r’d’),
(r’n[.]’, r’n, uh-hah-hah-hah.’))

class OldeDialectizer(Dialectizer):
"""convert HTML to mock Middle English"""
subs = ((r’i([bcdfghjklmnpqrstvwxyz])e\b’, r’y\1’),

(r’i([bcdfghjklmnpqrstvwxyz])e’, r’y\1\1e’),
(r’ick\b’, r’yk’),
(r’ia([bcdfghjklmnpqrstvwxyz])’, r’e\1e’),
(r’e[ea]([bcdfghjklmnpqrstvwxyz])’, r’e\1e’),
(r’([bcdfghjklmnpqrstvwxyz])y’, r’\1ee’),
(r’([bcdfghjklmnpqrstvwxyz])er’, r’\1re’),
(r’([aeiou])re\b’, r’\1r’),
(r’ia([bcdfghjklmnpqrstvwxyz])’, r’i\1e’),
(r’tion\b’, r’cioun’),
(r’ion\b’, r’ioun’),
(r’aid’, r’ayde’),
(r’ai’, r’ey’),
(r’ay\b’, r’y’),
(r’ay’, r’ey’),

133

(r’ant’, r’aunt’),
(r’ea’, r’ee’),
(r’oa’, r’oo’),
(r’ue’, r’e’),
(r’oe’, r’o’),
(r’ou’, r’ow’),
(r’ow’, r’ou’),
(r’\bhe’, r’hi’),
(r’ve\b’, r’veth’),
(r’se\b’, r’e’),
(r"’s\b", r’es’),
(r’ic\b’, r’ick’),
(r’ics\b’, r’icc’),
(r’ical\b’, r’ick’),
(r’tle\b’, r’til’),
(r’ll\b’, r’l’),
(r’ould\b’, r’olde’),
(r’own\b’, r’oune’),
(r’un\b’, r’onne’),
(r’rry\b’, r’rye’),
(r’est\b’, r’este’),
(r’pt\b’, r’pte’),
(r’th\b’, r’the’),
(r’ch\b’, r’che’),
(r’ss\b’, r’sse’),
(r’([wybdp])\b’, r’\1e’),
(r’([rnt])\b’, r’\1\1e’),
(r’from’, r’fro’),
(r’when’, r’whan’))

def translate(url, dialectName="chef"):
"""fetch URL and translate using dialect

dialect in ("chef", "fudd", "olde")"""
import urllib
sock = urllib.urlopen(url)
htmlSource = sock.read()
sock.close()
parserName = "%sDialectizer" % dialectName.capitalize()
parserClass = globals()[parserName]
parser = parserClass()
parser.feed(htmlSource)
parser.close()
return parser.output()

def test(url):
"""test all dialects against URL"""
for dialect in ("chef", "fudd", "olde"):

outfile = "%s.html" % dialect

134

fsock = open(outfile, "wb")
fsock.write(translate(url, dialect))
fsock.close()
import webbrowser
webbrowser.open_new(outfile)

if __name__ == "__main__":
test("http://diveintopython.org/odbchelper_list.html")

Example 8.3. Output of dialect.py

Running this script will translate Section 3.2 into mock Swedish Chef-speak (from The Mup-
pets), mock Elmer Fudd-speak (from Bugs Bunny cartoons), and mock Middle English (loosely
based on Chaucer’s The Canterbury Tales). If you look at the HTML source of the output
pages, you’ll see that all the HTML tags and attributes are untouched, but the text between the
tags has been “translated” into the mock language. If you look closer, you’ll see that, in fact,
only the titles and paragraphs were translated; the code listings and screen examples were left
untouched.

<div class="abstract">
<p>Lists awe Pydon’s wowkhowse datatype.
If youw onwy expewience wif wists is awways in
Visuaw Basic ow (God fowbid) de datastowe
in Powewbuiwdew, bwace youwsewf fow
Pydon wists.</p>
</div>

8.2 Introducing sgmllib.py
HTML processing is broken into three steps: breaking down the HTML into its
constituent pieces, fiddling with the pieces, and reconstructing the pieces into
HTML again. The first step is done by sgmllib.py, a part of the standard Python
library.

The key to understanding this chapter is to realize that HTML is not just text, it is structured
text. The structure is derived from the more-or-less-hierarchical sequence of start tags and end
tags. Usually you don’t work with HTML this way; you work with it textually in a text editor,
or visually in a web browser or web authoring tool. sgmllib.py presents HTML structurally.

sgmllib.py contains one important class: SGMLParser. SGMLParser parses HTML into use-
ful pieces, like start tags and end tags. As soon as it succeeds in breaking down some data into
a useful piece, it calls a method on itself based on what it found. In order to use the parser,
you subclass the SGMLParser class and override these methods. This is what I meant when I

../native_data_types/chef.html
../native_data_types/chef.html
../native_data_types/chef.html
../native_data_types/fudd.html
../native_data_types/fudd.html
../native_data_types/fudd.html
../native_data_types/olde.html
../native_data_types/olde.html
../native_data_types/olde.html

135

said that it presents HTML structurally : the structure of the HTML determines the sequence
of method calls and the arguments passed to each method.

SGMLParser parses HTML into 8 kinds of data, and calls a separate method for each of them:

Start tag

An HTML tag that starts a block, like <html>, <head>, <body>, or <pre>, or a stand-
alone tag like
 or . When it finds a start tag tagname, SGMLParser will look
for a method called start_(tagname) or do_(tagname). For instance, when it finds a
<pre> tag, it will look for a start_pre or do_pre method. If found, SGMLParser calls
this method with a list of the tag’s attributes; otherwise, it calls unknown_starttag with
the tag name and list of attributes.

End tag

An HTML tag that ends a block, like </html>, </head>, </body>, or </pre>. When
it finds an end tag, SGMLParser will look for a method called end_(tagname). If found,
SGMLParser calls this method, otherwise it calls unknown_endtag with the tag name.

Character reference

An escaped character referenced by its decimal or hexadecimal equivalent, like .
When found, SGMLParser calls handle_charref with the text of the decimal or hexa-
decimal character equivalent.

Entity reference

An HTML entity, like ©. When found, SGMLParser calls handle_entityref with
the name of the HTML entity.

Comment

An HTML comment, enclosed in <!– ... –>. When found, SGMLParser calls han-
dle_comment with the body of the comment.

Processing instruction

An HTML processing instruction, enclosed in <? ... >. When found, SGMLParser
calls handle_pi with the body of the processing instruction.

Declaration

An HTML declaration, such as a DOCTYPE, enclosed in <! ... >. When found, SGML-
Parser calls handle_decl with the body of the declaration.

136

Text data

A block of text. Anything that doesn’t fit into the other 7 categories. When found, SGML-
Parser calls handle_data with the text.

Language evolution: DOCTYPE
Python 2.0 had a bug where SGMLParser would not recognize declarations at all (handle_decl
would never be called), which meant that DOCTYPEs were silently ignored. This is fixed in
Python 2.1.

sgmllib.py comes with a test suite to illustrate this. You can run sgmllib.py, passing the
name of an HTML file on the command line, and it will print out the tags and other ele-
ments as it parses them. It does this by subclassing the SGMLParser class and defining un-
known_starttag, unknown_endtag, handle_data and other methods which simply print
their arguments.

Specifying command line arguments in Windows
In the ActivePython IDE on Windows, you can specify command line arguments in the “Run
script” dialog. Separate multiple arguments with spaces.

Example 8.4. Sample test of sgmllib.py

Here is a snippet from the table of contents of the HTML version of this book. Of course your
paths may vary. (If you haven’t downloaded the HTML version of the book, you can do so at
http://diveintopython.org/.

c:\python23\lib> type "c:\downloads\diveintopython\html\toc\index.html"

<!DOCTYPE html
PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Dive Into Python</title>
<link rel="stylesheet" href="diveintopython.css" type="text/css">

... rest of file omitted for brevity ...

Running this through the test suite of sgmllib.py yields this output:

c:\python23\lib> python sgmllib.py "c:\downloads\diveintopython\html\toc\index.html"
data: ’\n\n’
start tag: <html lang="en" >
data: ’\n ’

http://diveintopython.org/
http://diveintopython.org/
http://diveintopython.org/
http://diveintopython.org/

137

start tag: <head>
data: ’\n ’
start tag: <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" >
data: ’\n \n ’
start tag: <title>
data: ’Dive Into Python’
end tag: </title>
data: ’\n ’
start tag: <link rel="stylesheet" href="diveintopython.css" type="text/css" >
data: ’\n ’

... rest of output omitted for brevity ...

Here’s the roadmap for the rest of the chapter:

• Subclass SGMLParser to create classes that extract interesting data out of HTML docu-
ments.

• Subclass SGMLParser to create BaseHTMLProcessor, which overrides all 8 handler meth-
ods and uses them to reconstruct the original HTML from the pieces.

• Subclass BaseHTMLProcessor to create Dialectizer, which adds some methods to process
specific HTML tags specially, and overrides the handle_data method to provide a frame-
work for processing the text blocks between the HTML tags.

• Subclass Dialectizer to create classes that define text processing rules used by Dialec-
tizer.handle_data.

• Write a test suite that grabs a real web page from http://diveintopython.org/ and
processes it.

Along the way, you’ll also learn about locals, globals, and dictionary-based string format-
ting.

8.3 Extracting data from HTML documents
To extract data from HTML documents, subclass the SGMLParser class and de-
fine methods for each tag or entity you want to capture.

The first step to extracting data from an HTML document is getting some HTML. If you have
some HTML lying around on your hard drive, you can use file functions to read it, but the
real fun begins when you get HTML from live web pages.

Example 8.5. Introducing urllib

> import urllib 1

> sock = urllib.urlopen("http://diveintopython.org/") 2

138

> htmlSource = sock.read() 3

> sock.close() 4

> print htmlSource 5

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head>
<meta http-equiv=’Content-Type’ content=’text/html; charset=ISO-8859-1’>

<title>Dive Into Python</title>
<link rel=’stylesheet’ href=’diveintopython.css’ type=’text/css’>
<link rev=’made’ href=’mailto:mark@diveintopython.org’>
<meta name=’keywords’ content=’Python, Dive Into Python, tutorial, object-oriented,
programming, documentation, book, free’>
<meta name=’description’ content=’a free Python tutorial for experienced programmers’>
</head>
<body bgcolor=’white’ text=’black’ link=’#0000FF’ vlink=’#840084’ alink=’#0000FF’>
<table cellpadding=’0’ cellspacing=’0’ border=’0’ width=’100%’>
<tr><td class=’header’ width=’1%’ valign=’top’>diveintopython.org</td>
<td width=’99%’ align=’right’><hr size=’1’ noshade></td></tr>
<tr><td class=’tagline’ colspan=’2’>Python for experienced programmers</td></tr>

[...snip...]

1 The urllib module is part of the standard Python library. It contains functions for get-
ting information about and actually retrieving data from Internet-based URLs (mainly web
pages).

2 The simplest use of urllib is to retrieve the entire text of a web page using the urlopen
function. Opening a URL is similar to opening a file. The return value of urlopen is a
file-like object, which has some of the same methods as a file object.

3 The simplest thing to do with the file-like object returned by urlopen is read, which reads
the entire HTML of the web page into a single string. The object also supports readlines,
which reads the text line by line into a list.

4 When you’re done with the object, make sure to close it, just like a normal file object.

5 You now have the complete HTML of the home page of http://diveintopython.org/
in a string, and you’re ready to parse it.

Example 8.6. Introducing urllister.py

If you have not already done so, you can download this and other examples used in this book.

from sgmllib import SGMLParser

class URLLister(SGMLParser):
def reset(self): 1

SGMLParser.reset(self)
self.urls = []

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

139

def start_a(self, attrs): 2

href = [v for k, v in attrs if k==’href’] 3 4

if href:
self.urls.extend(href)

1 reset is called by the __init__ method of SGMLParser, and it can also be called manu-
ally once an instance of the parser has been created. So if you need to do any initialization,
do it in reset, not in __init__, so that it will be re-initialized properly when someone
re-uses a parser instance.

2 start_a is called by SGMLParser whenever it finds an <a> tag. The tag may contain an
href attribute, and/or other attributes, like name or title. The attrs parameter is a list
of tuples, [(attribute, value), (attribute, value), ...]. Or it may be just an
<a>, a valid (if useless) HTML tag, in which case attrs would be an empty list.

3 You can find out whether this <a> tag has an href attribute with a simple multi-variable
list comprehension.

4 String comparisons like k==’href’ are always case-sensitive, but that’s safe in this case,
because SGMLParser converts attribute names to lowercase while building attrs.

Example 8.7. Using urllister.py

> import urllib, urllister
> usock = urllib.urlopen("http://diveintopython.org/")
> parser = urllister.URLLister()
> parser.feed(usock.read()) 1

> usock.close() 2

> parser.close() 3

> for url in parser.urls: print url 4

toc/index.html
#download
#languages
toc/index.html
appendix/history.html
download/diveintopython-html-5.0.zip
download/diveintopython-pdf-5.0.zip
download/diveintopython-word-5.0.zip
download/diveintopython-text-5.0.zip
download/diveintopython-html-flat-5.0.zip
download/diveintopython-xml-5.0.zip
download/diveintopython-common-5.0.zip

... rest of output omitted for brevity ...

140

1 Call the feed method, defined in SGMLParser, to get HTML into the parser.1 It takes a
string, which is what usock.read() returns.

2 Like files, you should close your URL objects as soon as you’re done with them.

3 You should close your parser object, too, but for a different reason. You’ve read all
the data and fed it to the parser, but the feed method isn’t guaranteed to have actually
processed all the HTML you give it; it may buffer it, waiting for more. Be sure to call close
to flush the buffer and force everything to be fully parsed.

4 Once the parser is closed, the parsing is complete, and parser.urls contains a list of all
the linked URLs in the HTML document. (Your output may look different, if the download
links have been updated by the time you read this.)

8.4 Introducing BaseHTMLProcessor.py
SGMLParser doesn’t produce anything by itself. It parses and parses and parses,
and it calls a method for each interesting thing it finds, but the methods don’t
do anything. SGMLParser is an HTML consumer : it takes HTML and breaks
it down into small, structured pieces. As you saw in the previous section, you
can subclass SGMLParser to define classes that catch specific tags and produce
useful things, like a list of all the links on a web page. Now you’ll take this one
step further by defining a class that catches everything SGMLParser throws at
it and reconstructs the complete HTML document. In technical terms, this class
will be an HTML producer.

BaseHTMLProcessor subclasses SGMLParser and provides all 8 essential handler methods:
unknown_starttag, unknown_endtag, handle_charref, handle_entityref, handle_comment,
handle_pi, handle_decl, and handle_data.

Example 8.8. Introducing BaseHTMLProcessor

class BaseHTMLProcessor(SGMLParser):
def reset(self): 1

self.pieces = []
SGMLParser.reset(self)

The technical term for a parser like SGMLParser is a consumer : it consumes HTML and breaks it down. Presum-1

ably, the name feed was chosen to fit into the whole “consumer” motif. Personally, it makes me think of an exhibit
in the zoo where there’s just a dark cage with no trees or plants or evidence of life of any kind, but if you stand
perfectly still and look really closely you can make out two beady eyes staring back at you from the far left corner,
but you convince yourself that that’s just your mind playing tricks on you, and the only way you can tell that the
whole thing isn’t just an empty cage is a small innocuous sign on the railing that reads, “Do not feed the parser.” But
maybe that’s just me. In any event, it’s an interesting mental image.

141

def unknown_starttag(self, tag, attrs): 2

strattrs = "".join([’ %s="%s"’ % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

def unknown_endtag(self, tag): 3

self.pieces.append("</%(tag)s>" % locals())

def handle_charref(self, ref): 4

self.pieces.append("&#%(ref)s;" % locals())

def handle_entityref(self, ref): 5

self.pieces.append("&%(ref)s" % locals())
if htmlentitydefs.entitydefs.has_key(ref):

self.pieces.append(";")

def handle_data(self, text): 6

self.pieces.append(text)

def handle_comment(self, text): 7

self.pieces.append("<!–%(text)s–>" % locals())

def handle_pi(self, text): 8

self.pieces.append("<?%(text)s>" % locals())

def handle_decl(self, text):
self.pieces.append("<!%(text)s>" % locals())

1 reset, called by SGMLParser.__init__, initializes self.pieces as an empty list before
calling the ancestor method. self.pieces is a data attribute which will hold the pieces of
the HTML document you’re constructing. Each handler method will reconstruct the HTML
that SGMLParser parsed, and each method will append that string to self.pieces. Note
that self.pieces is a list. You might be tempted to define it as a string and just keep
appending each piece to it. That would work, but Python is much more efficient at dealing
with lists.2

2 Since BaseHTMLProcessor does not define any methods for specific tags (like the start_a
method in URLLister), SGMLParser will call unknown_starttag for every start tag. This
method takes the tag (tag) and the list of attribute name/value pairs (attrs), reconstructs

The reason Python is better at lists than strings is that lists are mutable but strings are immutable. This means that2

appending to a list just adds the element and updates the index. Since strings can not be changed after they are
created, code like s = s + newpiece will create an entirely new string out of the concatenation of the original and
the new piece, then throw away the original string. This involves a lot of expensive memory management, and the
amount of effort involved increases as the string gets longer, so doing s = s + newpiece in a loop is deadly. In
technical terms, appending n items to a list is O(n), while appending n items to a string is O(n2).

142

the original HTML, and appends it to self.pieces. The string formatting here is a lit-
tle strange; you’ll untangle that (and also the odd-looking locals function) later in this
chapter.

3 Reconstructing end tags is much simpler; just take the tag name and wrap it in the </...>
brackets.

4 When SGMLParser finds a character reference, it calls handle_charref with the bare
reference. If the HTML document contains the reference , ref will be 160. Recon-
structing the original complete character reference just involves wrapping ref in &#...;
characters.

5 Entity references are similar to character references, but without the hash mark. Recon-
structing the original entity reference requires wrapping ref in &...; characters. (Actu-
ally, as an erudite reader pointed out to me, it’s slightly more complicated than this. Only
certain standard HTML entites end in a semicolon; other similar-looking entities do not.
Luckily for us, the set of standard HTML entities is defined in a dictionary in a Python
module called htmlentitydefs. Hence the extra if statement.)

6 Blocks of text are simply appended to self.pieces unaltered.

7 HTML comments are wrapped in <!–...–> characters.

8 Processing instructions are wrapped in <?...> characters.

Processing HTML with embedded script
The HTML specification requires that all non-HTML (like client-side JavaScript) must be en-
closed in HTML comments, but not all web pages do this properly (and all modern web
browsers are forgiving if they don’t). BaseHTMLProcessor is not forgiving; if script is im-
properly embedded, it will be parsed as if it were HTML. For instance, if the script contains
less-than and equals signs, SGMLParser may incorrectly think that it has found tags and attrib-
utes. SGMLParser always converts tags and attribute names to lowercase, which may break
the script, and BaseHTMLProcessor always encloses attribute values in double quotes (even
if the original HTML document used single quotes or no quotes), which will certainly break
the script. Always protect your client-side script within HTML comments.

Example 8.9. BaseHTMLProcessor output

def output(self): 1

"""Return processed HTML as a single string"""
return "".join(self.pieces) 2

143

1 This is the one method in BaseHTMLProcessor that is never called by the ancestor SGML-
Parser. Since the other handler methods store their reconstructed HTML in self.pieces,
this function is needed to join all those pieces into one string. As noted before, Python is
great at lists and mediocre at strings, so you only create the complete string when some-
body explicitly asks for it.

2 If you prefer, you could use the join method of the string module instead: string.join(self.pieces,
"")

Further reading

• W3C discusses character and entity references.

• Python Library Reference confirms your suspicions that the htmlentitydefs module is
exactly what it sounds like.

8.5 locals and globals
Let’s digress from HTML processing for a minute and talk about how Python
handles variables. Python has two built-in functions, locals and globals,
which provide dictionary-based access to local and global variables.

Remember locals? You first saw it here:

def unknown_starttag(self, tag, attrs):
strattrs = "".join([’ %s="%s"’ % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

No, wait, you can’t learn about locals yet. First, you need to learn about namespaces. This is
dry stuff, but it’s important, so pay attention.

Python uses what are called namespaces to keep track of variables. A namespace is just like a
dictionary where the keys are names of variables and the dictionary values are the values of
those variables. In fact, you can access a namespace as a Python dictionary, as you’ll see in a
minute.

At any particular point in a Python program, there are several namespaces available. Each
function has its own namespace, called the local namespace, which keeps track of the func-
tion’s variables, including function arguments and locally defined variables. Each module has
its own namespace, called the global namespace, which keeps track of the module’s variables,
including functions, classes, any other imported modules, and module-level variables and con-
stants. And there is the built-in namespace, accessible from any module, which holds built-in
functions and exceptions.

http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html
http://www.python.org/doc/current/lib/module-htmlentitydefs.html
http://www.python.org/doc/current/lib/module-htmlentitydefs.html

144

When a line of code asks for the value of a variable x, Python will search for that variable in all
the available namespaces, in order:

1. local namespace - specific to the current function or class method. If the function defines a
local variable x, or has an argument x, Python will use this and stop searching.

2. global namespace - specific to the current module. If the module has defined a variable,
function, or class called x, Python will use that and stop searching.

3. built-in namespace - global to all modules. As a last resort, Python will assume that x is the
name of built-in function or variable.

If Python doesn’t find x in any of these namespaces, it gives up and raises a NameError with
the message There is no variable named ’x’, which you saw back in Example 3.18, but you
didn’t appreciate how much work Python was doing before giving you that error.

Language evolution: nested scopes
Python 2.2 introduced a subtle but important change that affects the namespace search order:
nested scopes. In versions of Python prior to 2.2, when you reference a variable within a nested
function or lambda function, Python will search for that variable in the current (nested or
lambda) function’s namespace, then in the module’s namespace. Python 2.2 will search for the
variable in the current (nested or lambda) function’s namespace, then in the parent function’s
namespace, then in the module’s namespace. Python 2.1 can work either way; by default, it
works like Python 2.0, but you can add the following line of code at the top of your module to
make your module work like Python 2.2:

from __future__ import nested_scopes

Are you confused yet? Don’t despair! This is really cool, I promise. Like many things in
Python, namespaces are directly accessible at run-time. How? Well, the local namespace is ac-
cessible via the built-in locals function, and the global (module level) namespace is accessible
via the built-in globals function.

Example 8.10. Introducing locals

> def foo(arg): 1

... x = 1

... print locals()

...
> foo(7) 2

{’arg’: 7, ’x’: 1}
> foo(’bar’) 3

{’arg’: ’bar’, ’x’: 1}

145

1 The function foo has two variables in its local namespace: arg, whose value is passed in
to the function, and x, which is defined within the function.

2 locals returns a dictionary of name/value pairs. The keys of this dictionary are the
names of the variables as strings; the values of the dictionary are the actual values of the
variables. So calling foo with 7 prints the dictionary containing the function’s two local
variables: arg (7) and x (1).

3 Remember, Python has dynamic typing, so you could just as easily pass a string in for
arg; the function (and the call to locals) would still work just as well. locals works with
all variables of all datatypes.

What locals does for the local (function) namespace, globals does for the global (module)
namespace. globals is more exciting, though, because a module’s namespace is more excit-
ing.3 Not only does the module’s namespace include module-level variables and constants, it
includes all the functions and classes defined in the module. Plus, it includes anything that
was imported into the module.

Remember the difference between from module import and import module? With import
module, the module itself is imported, but it retains its own namespace, which is why you need
to use the module name to access any of its functions or attributes: module.function. But
with from module import, you’re actually importing specific functions and attributes from
another module into your own namespace, which is why you access them directly without
referencing the original module they came from. With the globals function, you can actually
see this happen.

Example 8.11. Introducing globals

Look at the following block of code at the bottom of BaseHTMLProcessor.py:

if __name__ == "__main__":
for k, v in globals().items(): 1

print k, "=", v

1 Just so you don’t get intimidated, remember that you’ve seen all this before. The globals
function returns a dictionary, and you’re iterating through the dictionary using the items
method and multi-variable assignment. The only thing new here is the globals function.

Now running the script from the command line gives this output (note that your output may
be slightly different, depending on your platform and where you installed Python):

c:\docbook\dip\py> python BaseHTMLProcessor.py

I don’t get out much.3

146

SGMLParser = sgmllib.SGMLParser 1

htmlentitydefs = <module ’htmlentitydefs’ from ’C:\Python23\lib\htmlentitydefs.py’> 2

BaseHTMLProcessor = __main__.BaseHTMLProcessor 3

__name__ = __main__ 4

... rest of output omitted for brevity...

1 SGMLParser was imported from sgmllib, using from module import. That means that
it was imported directly into the module’s namespace, and here it is.

2 Contrast this with htmlentitydefs, which was imported using import. That means
that the htmlentitydefs module itself is in the namespace, but the entitydefs variable
defined within htmlentitydefs is not.

3 This module only defines one class, BaseHTMLProcessor, and here it is. Note that the
value here is the class itself, not a specific instance of the class.

4 Remember the if __name__ trick? When running a module (as opposed to importing it
from another module), the built-in __name__ attribute is a special value, __main__. Since
you ran this module as a script from the command line, __name__ is __main__, which is
why the little test code to print the globals got executed.

Accessing variables dynamically
Using the locals and globals functions, you can get the value of arbitrary variables dynam-
ically, providing the variable name as a string. This mirrors the functionality of the getattr
function, which allows you to access arbitrary functions dynamically by providing the func-
tion name as a string.

There is one other important difference between the locals and globals functions, which
you should learn now before it bites you. It will bite you anyway, but at least then you’ll
remember learning it.

Example 8.12. locals is read-only, globals is not

def foo(arg):
x = 1
print locals() 1

locals()["x"] = 2 2

print "x=",x 3

z = 7
print "z=",z
foo(3)
globals()["z"] = 8 4

print "z=",z 5

147

1 Since foo is called with 3, this will print {’arg’: 3, ’x’: 1}. This should not be a
surprise.

2 locals is a function that returns a dictionary, and here you are setting a value in that
dictionary. You might think that this would change the value of the local variable x to 2,
but it doesn’t. locals does not actually return the local namespace, it returns a copy. So
changing it does nothing to the value of the variables in the local namespace.

3 This prints x= 1, not x= 2.

4 After being burned by locals, you might think that this wouldn’t change the value of
z, but it does. Due to internal differences in how Python is implemented (which I’d rather
not go into, since I don’t fully understand them myself), globals returns the actual global
namespace, not a copy: the exact opposite behavior of locals. So any changes to the
dictionary returned by globals directly affect your global variables.

5 This prints z= 8, not z= 7.

8.6 Dictionary-based string formatting

Why did you learn about locals and globals? So you can learn about dictionary-based
string formatting. As you recall, regular string formatting provides an easy way to insert
values into strings. Values are listed in a tuple and inserted in order into the string in place
of each formatting marker. While this is efficient, it is not always the easiest code to read,
especially when multiple values are being inserted. You can’t simply scan through the string in
one pass and understand what the result will be; you’re constantly switching between reading
the string and reading the tuple of values.

There is an alternative form of string formatting that uses dictionaries instead of
tuples of values.

Example 8.13. Introducing dictionary-based string formatting

> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
> "%(pwd)s" % params 1

’secret’
> "%(pwd)s is not a good password for %(uid)s" % params 2

’secret is not a good password for sa’
> "%(database)s of mind, %(database)s of body" % params 3

’master of mind, master of body’

1 Instead of a tuple of explicit values, this form of string formatting uses a dictionary,
params. And instead of a simple %s marker in the string, the marker contains a name

148

in parentheses. This name is used as a key in the params dictionary and subsitutes the
corresponding value, secret, in place of the %(pwd)s marker.

2 Dictionary-based string formatting works with any number of named keys. Each key
must exist in the given dictionary, or the formatting will fail with a KeyError.

3 You can even specify the same key twice; each occurrence will be replaced with the same
value.

So why would you use dictionary-based string formatting? Well, it does seem like overkill to
set up a dictionary of keys and values simply to do string formatting in the next line; it’s really
most useful when you happen to have a dictionary of meaningful keys and values already.
Like locals.

Example 8.14. Dictionary-based string formatting in BaseHTMLProcessor.py

def handle_comment(self, text):
self.pieces.append("<!–%(text)s–>" % locals()) 1

1 Using the built-in locals function is the most common use of dictionary-based string
formatting. It means that you can use the names of local variables within your string (in this
case, text, which was passed to the class method as an argument) and each named variable
will be replaced by its value. If text is ’Begin page footer’, the string formatting "<!–
%(text)s–>" % locals() will resolve to the string ’<!–Begin page footer–>’.

Example 8.15. More dictionary-based string formatting

def unknown_starttag(self, tag, attrs):
strattrs = "".join([’ %s="%s"’ % (key, value) for key, value in attrs]) 1

self.pieces.append("<%(tag)s%(strattrs)s>" % locals()) 2

1 When this method is called, attrs is a list of key/value tuples, just like the items of a
dictionary, which means you can use multi-variable assignment to iterate through it. This
should be a familiar pattern by now, but there’s a lot going on here, so let’s break it down:

a. Suppose attrs is [(’href’, ’index.html’), (’title’, ’Go to home page’)].

b. In the first round of the list comprehension, key will get ’href’, and value will get
’index.html’.

c. The string formatting ’ %s="%s"’ % (key, value) will resolve to ’ href="index.html"’.
This string becomes the first element of the list comprehension’s return value.

d. In the second round, key will get ’title’, and value will get ’Go to home page’.

149

e. The string formatting will resolve to ’ title="Go to home page"’.

f. The list comprehension returns a list of these two resolved strings, and strattrs will
join both elements of this list together to form ’ href="index.html" title="Go to
home page"’.

2 Now, using dictionary-based string formatting, you insert the value of tag and strat-
trs into a string. So if tag is ’a’, the final result would be ’<a href="index.html"
title="Go to home page">’, and that is what gets appended to self.pieces.

Performance issues with locals
Using dictionary-based string formatting with locals is a convenient way of making complex
string formatting expressions more readable, but it comes with a price. There is a slight per-
formance hit in making the call to locals, since locals builds a copy of the local namespace.

8.7 Quoting attribute values

Abstract

A common question on comp.lang.python is “I have a bunch of HTML docu-
ments with unquoted attribute values, and I want to properly quote them all.
How can I do this?”4 (This is generally precipitated by a project manager who
has found the HTML-is-a-standard religion joining a large project and proclaim-
ing that all pages must validate against an HTML validator. Unquoted attribute
values are a common violation of the HTML standard.) Whatever the reason,
unquoted attribute values are easy to fix by feeding HTML through BaseHTML-
Processor.

BaseHTMLProcessor consumes HTML (since it’s descended from SGMLParser) and produces
equivalent HTML, but the HTML output is not identical to the input. Tags and attribute names
will end up in lowercase, even if they started in uppercase or mixed case, and attribute values
will be enclosed in double quotes, even if they started in single quotes or with no quotes at all.
It is this last side effect that you can take advantage of.

Example 8.16. Quoting attribute values

> htmlSource = """ 1

... <html>

All right, it’s not that common a question. It’s not up there with “What editor should I use to write Python4

code?” (answer: Emacs) or “Is Python better or worse than Perl?” (answer: “Perl is worse than Python because
people wanted it worse.” -Larry Wall, 10/14/1998) But questions about HTML processing pop up in one form or
another about once a month, and among those questions, this is a popular one.

http://groups.google.com/groups?group=comp.lang.python

150

... <head>

... <title>Test page</title>

... </head>

... <body>

...

... Home

... Table of contents

... Revision history

... </body>

... </html>

... """
> from BaseHTMLProcessor import BaseHTMLProcessor
> parser = BaseHTMLProcessor()
> parser.feed(htmlSource) 2

> print parser.output() 3

<html>
<head>
<title>Test page</title>
</head>
<body>

Home
Table of contents
Revision history
</body>
</html>

1 Note that the attribute values of the href attributes in the <a> tags are not properly
quoted. (Also note that you’re using triple quotes for something other than a doc string.
And directly in the IDE, no less. They’re very useful.)

2 Feed the parser.

3 Using the output function defined in BaseHTMLProcessor, you get the output as a sin-
gle string, complete with quoted attribute values. While this may seem anti-climactic, think
about how much has actually happened here: SGMLParser parsed the entire HTML docu-
ment, breaking it down into tags, refs, data, and so forth; BaseHTMLProcessor used those
elements to reconstruct pieces of HTML (which are still stored in parser.pieces, if you
want to see them); finally, you called parser.output, which joined all the pieces of HTML
into one string.

8.8 Introducing dialect.py
Dialectizer is a simple (and silly) descendant of BaseHTMLProcessor. It runs
blocks of text through a series of substitutions, but it makes sure that anything
within a <pre>...</pre> block passes through unaltered.

151

To handle the<pre> blocks, you define two methods in Dialectizer: start_pre and end_pre.

Example 8.17. Handling specific tags

def start_pre(self, attrs): 1

self.verbatim += 1 2

self.unknown_starttag("pre", attrs) 3

def end_pre(self): 4

self.unknown_endtag("pre") 5

self.verbatim -= 1 6

1 start_pre is called every time SGMLParser finds a <pre> tag in the HTML source. (In a
minute, you’ll see exactly how this happens.) The method takes a single parameter, attrs,
which contains the attributes of the tag (if any). attrs is a list of key/value tuples, just like
unknown_starttag takes.

2 In the reset method, you initialize a data attribute that serves as a counter for <pre>
tags. Every time you hit a <pre> tag, you increment the counter; every time you hit a
</pre> tag, you’ll decrement the counter. (You could just use this as a flag and set it to 1
and reset it to 0, but it’s just as easy to do it this way, and this handles the odd (but possible)
case of nested <pre> tags.) In a minute, you’ll see how this counter is put to good use.

3 That’s it, that’s the only special processing you do for <pre> tags. Now you pass the list
of attributes along to unknown_starttag so it can do the default processing.

4 end_pre is called every time SGMLParser finds a </pre> tag. Since end tags can not
contain attributes, the method takes no parameters.

5 First, you want to do the default processing, just like any other end tag.

6 Second, you decrement your counter to signal that this <pre> block has been closed.

At this point, it’s worth digging a little further into SGMLParser. I’ve claimed repeatedly
(and you’ve taken it on faith so far) that SGMLParser looks for and calls specific methods for
each tag, if they exist. For instance, you just saw the definition of start_pre and end_pre
to handle <pre> and </pre>. But how does this happen? Well, it’s not magic, it’s just good
Python coding.

Example 8.18. SGMLParser

def finish_starttag(self, tag, attrs): 1

try:
method = getattr(self, ’start_’ + tag) 2

except AttributeError: 3

152

try:
method = getattr(self, ’do_’ + tag) 4

except AttributeError:
self.unknown_starttag(tag, attrs) 5

return -1
else:

self.handle_starttag(tag, method, attrs) 6

return 0
else:

self.stack.append(tag)
self.handle_starttag(tag, method, attrs)
return 1 7

def handle_starttag(self, tag, method, attrs):
method(attrs) 8

1 At this point, SGMLParser has already found a start tag and parsed the attribute list. The
only thing left to do is figure out whether there is a specific handler method for this tag, or
whether you should fall back on the default method (unknown_starttag).

2 The “magic” of SGMLParser is nothing more than your old friend, getattr. What you may
not have realized before is that getattr will find methods defined in descendants of an
object as well as the object itself. Here the object is self, the current instance. So if tag
is ’pre’, this call to getattr will look for a start_pre method on the current instance,
which is an instance of the Dialectizer class.

3 getattr raises an AttributeError if the method it’s looking for doesn’t exist in the object
(or any of its descendants), but that’s okay, because you wrapped the call to getattr inside
a try...except block and explicitly caught the AttributeError.

4 Since you didn’t find a start_xxx method, you’ll also look for a do_xxx method before
giving up. This alternate naming scheme is generally used for standalone tags, like
,
which have no corresponding end tag. But you can use either naming scheme; as you can
see, SGMLParser tries both for every tag. (You shouldn’t define both a start_xxx and
do_xxx handler method for the same tag, though; only the start_xxx method will get
called.)

5 Another AttributeError, which means that the call to getattr failed with do_xxx. Since
you found neither a start_xxx nor a do_xxx method for this tag, you catch the exception
and fall back on the default method, unknown_starttag.

6 Remember, try...except blocks can have an else clause, which is called if no exception
is raised during the try...except block. Logically, that means that you did find a do_xxx
method for this tag, so you’re going to call it.

153

7 By the way, don’t worry about these different return values; in theory they mean some-
thing, but they’re never actually used. Don’t worry about the self.stack.append(tag)
either; SGMLParser keeps track internally of whether your start tags are balanced by ap-
propriate end tags, but it doesn’t do anything with this information either. In theory, you
could use this module to validate that your tags were fully balanced, but it’s probably not
worth it, and it’s beyond the scope of this chapter. You have better things to worry about
right now.

8 start_xxx and do_xxx methods are not called directly; the tag, method, and attributes
are passed to this function, handle_starttag, so that descendants can override it and
change the way all start tags are dispatched. You don’t need that level of control, so you just
let this method do its thing, which is to call the method (start_xxx or do_xxx) with the
list of attributes. Remember, method is a function, returned from getattr, and functions
are objects. (I know you’re getting tired of hearing it, and I promise I’ll stop saying it as
soon as I run out of ways to use it to my advantage.) Here, the function object is passed into
this dispatch method as an argument, and this method turns around and calls the function.
At this point, you don’t need to know what the function is, what it’s named, or where it’s
defined; the only thing you need to know about the function is that it is called with one
argument, attrs.

Now back to our regularly scheduled program: Dialectizer. When you left, you were in the
process of defining specific handler methods for <pre> and </pre> tags. There’s only one
thing left to do, and that is to process text blocks with the pre-defined substitutions. For that,
you need to override the handle_data method.

Example 8.19. Overriding the handle_data method

def handle_data(self, text): 1

self.pieces.append(self.verbatim and text or self.process(text)) 2

1 handle_data is called with only one argument, the text to process.

2 In the ancestor BaseHTMLProcessor, the handle_data method simply appended the text
to the output buffer, self.pieces. Here the logic is only slightly more complicated. If
you’re in the middle of a <pre>...</pre> block, self.verbatim will be some value
greater than 0, and you want to put the text in the output buffer unaltered. Otherwise,
you will call a separate method to process the substitutions, then put the result of that into
the output buffer. In Python, this is a one-liner, using the and-or trick.

You’re close to completely understanding Dialectizer. The only missing link is the nature
of the text substitutions themselves. If you know any Perl, you know that when complex text
substitutions are required, the only real solution is regular expressions. The classes later in

154

dialect.py define a series of regular expressions that operate on the text between the HTML
tags. But you just had a whole chapter on regular expressions. You don’t really want to slog
through regular expressions again, do you? God knows I don’t. I think you’ve learned enough
for one chapter.

8.9 Putting it all together

It’s time to put everything you’ve learned so far to good use. I hope you were
paying attention.

Example 8.20. The translate function, part 1

def translate(url, dialectName="chef"): 1

import urllib 2

sock = urllib.urlopen(url) 3

htmlSource = sock.read()
sock.close()

1 The translate function has an optional argument dialectName, which is a string that
specifies the dialect you’ll be using. You’ll see how this is used in a minute.

2 Hey, wait a minute, there’s an import statement in this function! That’s perfectly legal in
Python. You’re used to seeing import statements at the top of a program, which means
that the imported module is available anywhere in the program. But you can also import
modules within a function, which means that the imported module is only available within
the function. If you have a module that is only ever used in one function, this is an easy
way to make your code more modular. (When you find that your weekend hack has turned
into an 800-line work of art and decide to split it up into a dozen reusable modules, you’ll
appreciate this.)

3 Now you get the source of the given URL.

Example 8.21. The translate function, part 2: curiouser and curiouser

parserName = "%sDialectizer" % dialectName.capitalize() 1

parserClass = globals()[parserName] 2

parser = parserClass() 3

1 capitalize is a string method you haven’t seen before; it simply capitalizes the first letter
of a string and forces everything else to lowercase. Combined with some string formatting,
you’ve taken the name of a dialect and transformed it into the name of the correspond-
ing Dialectizer class. If dialectName is the string ’chef’, parserName will be the string
’ChefDialectizer’.

155

2 You have the name of a class as a string (parserName), and you have the global namespace
as a dictionary (globals()). Combined, you can get a reference to the class which the string
names. (Remember, classes are objects, and they can be assigned to variables just like any
other object.) If parserName is the string ’ChefDialectizer’, parserClass will be the
class ChefDialectizer.

3 Finally, you have a class object (parserClass), and you want an instance of the class.
Well, you already know how to do that: call the class like a function. The fact that the
class is being stored in a local variable makes absolutely no difference; you just call the
local variable like a function, and out pops an instance of the class. If parserClass is the
class ChefDialectizer, parser will be an instance of the class ChefDialectizer.

Why bother? After all, there are only 3 Dialectizer classes; why not just use a case state-
ment? (Well, there’s no case statement in Python, but why not just use a series of if state-
ments?) One reason: extensibility. The translate function has absolutely no idea how many
Dialectizer classes you’ve defined. Imagine if you defined a new FooDialectizer tomorrow;
translate would work by passing ’foo’ as the dialectName.

Even better, imagine putting FooDialectizer in a separate module, and importing it with
from module import. You’ve already seen that this includes it in globals(), so translate
would still work without modification, even though FooDialectizer was in a separate file.

Now imagine that the name of the dialect is coming from somewhere outside the program,
maybe from a database or from a user-inputted value on a form. You can use any number
of server-side Python scripting architectures to dynamically generate web pages; this function
could take a URL and a dialect name (both strings) in the query string of a web page request,
and output the “translated” web page.

Finally, imagine a Dialectizer framework with a plug-in architecture. You could put each
Dialectizer class in a separate file, leaving only the translate function in dialect.py.
Assuming a consistent naming scheme, the translate function could dynamic import the ap-
propiate class from the appropriate file, given nothing but the dialect name. (You haven’t seen
dynamic importing yet, but I promise to cover it in a later chapter.) To add a new dialect, you
would simply add an appropriately-named file in the plug-ins directory (like foodialect.py
which contains the FooDialectizer class). Calling the translate function with the dialect
name ’foo’ would find the module foodialect.py, import the class FooDialectizer, and
away you go.

Example 8.22. The translate function, part 3

parser.feed(htmlSource) 1

parser.close() 2

return parser.output() 3

156

1 After all that imagining, this is going to seem pretty boring, but the feed function is what
does the entire transformation. You had the entire HTML source in a single string, so you
only had to call feed once. However, you can call feed as often as you want, and the parser
will just keep parsing. So if you were worried about memory usage (or you knew you were
going to be dealing with very large HTML pages), you could set this up in a loop, where
you read a few bytes of HTML and fed it to the parser. The result would be the same.

2 Because feed maintains an internal buffer, you should always call the parser’s close
method when you’re done (even if you fed it all at once, like you did). Otherwise you may
find that your output is missing the last few bytes.

3 Remember, output is the function you defined on BaseHTMLProcessor that joins all the
pieces of output you’ve buffered and returns them in a single string.

And just like that, you’ve “translated” a web page, given nothing but a URL and the name of
a dialect.

Further reading

• You thought I was kidding about the server-side scripting idea. So did I, until I found this
web-based dialectizer. Unfortunately, source code does not appear to be available.

8.10 Summary

Python provides you with a powerful tool, sgmllib.py, to manipulate HTML
by turning its structure into an object model. You can use this tool in many dif-
ferent ways.

• parsing the HTML looking for something specific

• aggregating the results, like the URL lister

• altering the structure along the way, like the attribute quoter

• transforming the HTML into something else by manipulating the text while leaving the
tags alone, like the Dialectizer

Along with these examples, you should be comfortable doing all of the following things:

• Using locals() and globals() to access namespaces

• Formatting strings using dictionary-based substitutions

http://rinkworks.com/dialect/
http://rinkworks.com/dialect/
http://rinkworks.com/dialect/

157

9 XML Processing

9.1 Diving in
These next two chapters are about XML processing in Python. It would be helpful if you
already knew what an XML document looks like, that it’s made up of structured tags to form
a hierarchy of elements, and so on. If this doesn’t make sense to you, there are many XML
tutorials that can explain the basics.

If you’re not particularly interested in XML, you should still read these chapters, which cover
important topics like Python packages, Unicode, command line arguments, and how to use
getattr for method dispatching.

Being a philosophy major is not required, although if you have ever had the misfortune of
being subjected to the writings of Immanuel Kant, you will appreciate the example program a
lot more than if you majored in something useful, like computer science.

There are two basic ways to work with XML. One is called SAX (“Simple API
for XML”), and it works by reading the XML a little bit at a time and calling a
method for each element it finds. (If you read Chapter 8, this should sound fa-
miliar, because that’s how the sgmllib module works.) The other is called DOM
(“Document Object Model”), and it works by reading in the entire XML docu-
ment at once and creating an internal representation of it using native Python
classes linked in a tree structure. Python has standard modules for both kinds of
parsing, but this chapter will only deal with using the DOM.

The following is a complete Python program which generates pseudo-random output based
on a context-free grammar defined in an XML format. Don’t worry yet if you don’t under-
stand what that means; you’ll examine both the program’s input and its output in more depth
throughout these next two chapters.

Example 9.1. kgp.py

If you have not already done so, you can download this and other examples used in this book.

"""Kant Generator for Python

Generates mock philosophy based on a context-free grammar

Usage: python kgp.py [options] [source]

Options:
-g ..., --grammar=... use specified grammar file or URL
-h, --help show this help
-d show debugging information while parsing

http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

158

Examples:
kgp.py generates several paragraphs of Kantian philosophy
kgp.py -g husserl.xml generates several paragraphs of Husserl
kpg.py "<xref id=’paragraph’/>" generates a paragraph of Kant
kgp.py template.xml reads from template.xml to decide what to generate

"""
from xml.dom import minidom
import random
import toolbox
import sys
import getopt

_debug = 0

class NoSourceError(Exception): pass

class KantGenerator:
"""generates mock philosophy based on a context-free grammar"""

def __init__(self, grammar, source=None):
self.loadGrammar(grammar)
self.loadSource(source and source or self.getDefaultSource())
self.refresh()

def _load(self, source):
"""load XML input source, return parsed XML document

- a URL of a remote XML file ("http://diveintopython.org/kant.xml")
- a filename of a local XML file ("~/diveintopython/common/py/kant.xml")
- standard input ("-")
- the actual XML document, as a string
"""
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()
return xmldoc

def loadGrammar(self, grammar):
"""load context-free grammar"""
self.grammar = self._load(grammar)
self.refs = {}
for ref in self.grammar.getElementsByTagName("ref"):

self.refs[ref.attributes["id"].value] = ref

def loadSource(self, source):
"""load source"""
self.source = self._load(source)

159

def getDefaultSource(self):
"""guess default source of the current grammar

The default source will be one of the <ref>s that is not
cross-referenced. This sounds complicated but it’s not.
Example: The default source for kant.xml is
"<xref id=’section’/>", because ’section’ is the one <ref>
that is not <xref>’d anywhere in the grammar.
In most grammars, the default source will produce the
longest (and most interesting) output.
"""
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):

xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
if not standaloneXrefs:

raise NoSourceError, "can’t guess source, and no source specified"
return ’<xref id="%s"/>’ % random.choice(standaloneXrefs)

def reset(self):
"""reset parser"""
self.pieces = []
self.capitalizeNextWord = 0

def refresh(self):
"""reset output buffer, re-parse entire source file, and return output

Since parsing involves a good deal of randomness, this is an
easy way to get new output without having to reload a grammar file
each time.
"""
self.reset()
self.parse(self.source)
return self.output()

def output(self):
"""output generated text"""
return "".join(self.pieces)

def randomChildElement(self, node):
"""choose a random child element of a node

This is a utility method used by do_xref and do_choice.
"""
choices = [e for e in node.childNodes

if e.nodeType == e.ELEMENT_NODE]
chosen = random.choice(choices)
if _debug:

160

sys.stderr.write(’%s available choices: %s\n’ % \
(len(choices), [e.toxml() for e in choices]))

sys.stderr.write(’Chosen: %s\n’ % chosen.toxml())
return chosen

def parse(self, node):
"""parse a single XML node

A parsed XML document (from minidom.parse) is a tree of nodes
of various types. Each node is represented by an instance of the
corresponding Python class (Element for a tag, Text for
text data, Document for the top-level document). The following
statement constructs the name of a class method based on the type
of node we’re parsing ("parse_Element" for an Element node,
"parse_Text" for a Text node, etc.) and then calls the method.
"""
parseMethod = getattr(self, "parse_%s" % node.__class__.__name__)
parseMethod(node)

def parse_Document(self, node):
"""parse the document node

The document node by itself isn’t interesting (to us), but
its only child, node.documentElement, is: it’s the root node
of the grammar.
"""
self.parse(node.documentElement)

def parse_Text(self, node):
"""parse a text node

The text of a text node is usually added to the output buffer
verbatim. The one exception is that <p class=’sentence’> sets
a flag to capitalize the first letter of the next word. If
that flag is set, we capitalize the text and reset the flag.
"""
text = node.data
if self.capitalizeNextWord:

self.pieces.append(text[0].upper())
self.pieces.append(text[1:])
self.capitalizeNextWord = 0

else:
self.pieces.append(text)

def parse_Element(self, node):
"""parse an element

An XML element corresponds to an actual tag in the source:
<xref id=’...’>, <p chance=’...’>, <choice>, etc.

161

Each element type is handled in its own method. Like we did in
parse(), we construct a method name based on the name of the
element ("do_xref" for an <xref> tag, etc.) and
call the method.
"""
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

def parse_Comment(self, node):
"""parse a comment

The grammar can contain XML comments, but we ignore them
"""
pass

def do_xref(self, node):
"""handle <xref id=’...’> tag

An <xref id=’...’> tag is a cross-reference to a <ref id=’...’>
tag. <xref id=’sentence’/> evaluates to a randomly chosen child of
<ref id=’sentence’>.
"""
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

def do_p(self, node):
"""handle <p> tag

The <p> tag is the core of the grammar. It can contain almost
anything: freeform text, <choice> tags, <xref> tags, even other
<p> tags. If a "class=’sentence’" attribute is found, a flag
is set and the next word will be capitalized. If a "chance=’X’"
attribute is found, there is an X% chance that the tag will be
evaluated (and therefore a (100-X)% chance that it will be
completely ignored)
"""
keys = node.attributes.keys()
if "class" in keys:

if node.attributes["class"].value == "sentence":
self.capitalizeNextWord = 1

if "chance" in keys:
chance = int(node.attributes["chance"].value)
doit = (chance > random.randrange(100))

else:
doit = 1

if doit:
for child in node.childNodes: self.parse(child)

162

def do_choice(self, node):
"""handle <choice> tag

A <choice> tag contains one or more <p> tags. One <p> tag
is chosen at random and evaluated; the rest are ignored.
"""
self.parse(self.randomChildElement(node))

def usage():
print __doc__

def main(argv):
grammar = "kant.xml"
try:

opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
except getopt.GetoptError:

usage()
sys.exit(2)

for opt, arg in opts:
if opt in ("-h", "--help"):

usage()
sys.exit()

elif opt == ’-d’:
global _debug
_debug = 1

elif opt in ("-g", "--grammar"):
grammar = arg

source = "".join(args)

k = KantGenerator(grammar, source)
print k.output()

if __name__ == "__main__":
main(sys.argv[1:])

Example 9.2. toolbox.py

"""Miscellaneous utility functions"""

def openAnything(source):
"""URI, filename, or string --> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you’re done with it.

163

Examples:
>>> from xml.dom import minidom
>>> sock = openAnything("http://localhost/kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("c:\\inetpub\\wwwroot\\kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("<ref id=’conjunction’><text>and</text><text>or</text></ref>")
>>> doc = minidom.parse(sock)
>>> sock.close()
"""
if hasattr(source, "read"):

return source

if source == ’-’:
import sys
return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)
import urllib
try:

return urllib.urlopen(source)
except (IOError, OSError):

pass

try to open with native open function (if source is pathname)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
import StringIO
return StringIO.StringIO(str(source))

Run the program kgp.py by itself, and it will parse the default XML-based grammar, in
kant.xml, and print several paragraphs worth of philosophy in the style of Immanuel Kant.

Example 9.3. Sample output of kgp.py

[you@localhost kgp]$ python kgp.py
As is shown in the writings of Hume, our a priori concepts, in

reference to ends, abstract from all content of knowledge; in the study
of space, the discipline of human reason, in accordance with the
principles of philosophy, is the clue to the discovery of the
Transcendental Deduction. The transcendental aesthetic, in all
theoretical sciences, occupies part of the sphere of human reason
concerning the existence of our ideas in general; still, the

164

never-ending regress in the series of empirical conditions constitutes
the whole content for the transcendental unity of apperception. What
we have alone been able to show is that, even as this relates to the
architectonic of human reason, the Ideal may not contradict itself, but
it is still possible that it may be in contradictions with the
employment of the pure employment of our hypothetical judgements, but
natural causes (and I assert that this is the case) prove the validity
of the discipline of pure reason. As we have already seen, time (and
it is obvious that this is true) proves the validity of time, and the
architectonic of human reason, in the full sense of these terms,
abstracts from all content of knowledge. I assert, in the case of the
discipline of practical reason, that the Antinomies are just as
necessary as natural causes, since knowledge of the phenomena is a
posteriori.

The discipline of human reason, as I have elsewhere shown, is by
its very nature contradictory, but our ideas exclude the possibility of
the Antinomies. We can deduce that, on the contrary, the pure
employment of philosophy, on the contrary, is by its very nature
contradictory, but our sense perceptions are a representation of, in
the case of space, metaphysics. The thing in itself is a
representation of philosophy. Applied logic is the clue to the
discovery of natural causes. However, what we have alone been able to
show is that our ideas, in other words, should only be used as a canon
for the Ideal, because of our necessary ignorance of the conditions.

[...snip...]

This is, of course, complete gibberish. Well, not complete gibberish. It is syntactically and
grammatically correct (although very verbose -- Kant wasn’t what you would call a get-to-the-
point kind of guy). Some of it may actually be true (or at least the sort of thing that Kant would
have agreed with), some of it is blatantly false, and most of it is simply incoherent. But all of it
is in the style of Immanuel Kant.

Let me repeat that this is much, much funnier if you are now or have ever been a philosophy
major.

The interesting thing about this program is that there is nothing Kant-specific about it. All the
content in the previous example was derived from the grammar file, kant.xml. If you tell
the program to use a different grammar file (which you can specify on the command line), the
output will be completely different.

Example 9.4. Simpler output from kgp.py

[you@localhost kgp]$ python kgp.py -g binary.xml
00101001
[you@localhost kgp]$ python kgp.py -g binary.xml
10110100

165

You will take a closer look at the structure of the grammar file later in this chapter. For now, all
you need to know is that the grammar file defines the structure of the output, and the kgp.py
program reads through the grammar and makes random decisions about which words to plug
in where.

9.2 Packages

Abstract

Actually parsing an XML document is very simple: one line of code. However,
before you get to that line of code, you need to take a short detour to talk about
packages.

Example 9.5. Loading an XML document (a sneak peek)

> from xml.dom import minidom 1

> xmldoc = minidom.parse(’~/diveintopython/common/py/kgp/binary.xml’)

1 This is a syntax you haven’t seen before. It looks almost like the from module import
you know and love, but the "." gives it away as something above and beyond a simple
import. In fact, xml is what is known as a package, dom is a nested package within xml, and
minidom is a module within xml.dom.

That sounds complicated, but it’s really not. Looking at the actual implementation may help.
Packages are little more than directories of modules; nested packages are subdirectories. The
modules within a package (or a nested package) are still just .py files, like always, except that
they’re in a subdirectory instead of the main lib/ directory of your Python installation.

Example 9.6. File layout of a package

Python21/ root Python installation (home of the executable)
|
+--lib/ library directory (home of the standard library modules)

|
+-- xml/ xml package (really just a directory with other stuff in it)

|
+--sax/ xml.sax package (again, just a directory)
|
+--dom/ xml.dom package (contains minidom.py)
|
+--parsers/ xml.parsers package (used internally)

166

So when you say from xml.dom import minidom, Python figures out that that means “look
in the xml directory for a dom directory, and look in that for the minidom module, and import
it as minidom”. But Python is even smarter than that; not only can you import entire mod-
ules contained within a package, you can selectively import specific classes or functions from
a module contained within a package. You can also import the package itself as a module.
The syntax is all the same; Python figures out what you mean based on the file layout of the
package, and automatically does the right thing.

Example 9.7. Packages are modules, too

> from xml.dom import minidom 1

> minidom
<module ’xml.dom.minidom’ from ’C:\Python21\lib\xml\dom\minidom.pyc’>
> minidom.Element
<class xml.dom.minidom.Element at 01095744>
> from xml.dom.minidom import Element 2

> Element
<class xml.dom.minidom.Element at 01095744>
> minidom.Element
<class xml.dom.minidom.Element at 01095744>
> from xml import dom 3

> dom
<module ’xml.dom’ from ’C:\Python21\lib\xml\dom__init__.pyc’>
> import xml 4

> xml
<module ’xml’ from ’C:\Python21\lib\xml__init__.pyc’>

1 Here you’re importing a module (minidom) from a nested package (xml.dom). The result
is that minidom is imported into your namespace, and in order to reference classes within
the minidom module (like Element), you need to preface them with the module name.

2 Here you are importing a class (Element) from a module (minidom) from a nested package
(xml.dom). The result is that Element is imported directly into your namespace. Note that
this does not interfere with the previous import; the Element class can now be referenced
in two ways (but it’s all still the same class).

3 Here you are importing the dom package (a nested package of xml) as a module in and of
itself. Any level of a package can be treated as a module, as you’ll see in a moment. It can
even have its own attributes and methods, just the modules you’ve seen before.

4 Here you are importing the root level xml package as a module.

So how can a package (which is just a directory on disk) be imported and treated as a module
(which is always a file on disk)? The answer is the magical __init__.py file. You see, pack-
ages are not simply directories; they are directories with a specific file, __init__.py, inside.

167

This file defines the attributes and methods of the package. For instance, xml.dom contains
a Node class, which is defined in xml/dom/__init__.py. When you import a package as a
module (like dom from xml), you’re really importing its __init__.py file.

What makes a package
A package is a directory with the special __init__.py file in it. The __init__.py file defines
the attributes and methods of the package. It doesn’t need to define anything; it can just be an
empty file, but it has to exist. But if __init__.py doesn’t exist, the directory is just a directory,
not a package, and it can’t be imported or contain modules or nested packages.

So why bother with packages? Well, they provide a way to logically group related modules.
Instead of having an xml package with sax and dom packages inside, the authors could have
chosen to put all the sax functionality in xmlsax.py and all the dom functionality in xml-
dom.py, or even put all of it in a single module. But that would have been unwieldy (as of this
writing, the XML package has over 3000 lines of code) and difficult to manage (separate source
files mean multiple people can work on different areas simultaneously).

If you ever find yourself writing a large subsystem in Python (or, more likely, when you realize
that your small subsystem has grown into a large one), invest some time designing a good
package architecture. It’s one of the many things Python is good at, so take advantage of it.

9.3 Parsing XML

Abstract

As I was saying, actually parsing an XML document is very simple: one line of
code. Where you go from there is up to you.

Example 9.8. Loading an XML document (for real this time)

> from xml.dom import minidom 1

> xmldoc = minidom.parse(’~/diveintopython/common/py/kgp/binary.xml’) 2

> xmldoc 3

<xml.dom.minidom.Document instance at 010BE87C>
> print xmldoc.toxml() 4

<?xml version="1.0" ?>
<grammar>
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\

168

<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

1 As you saw in the previous section, this imports the minidom module from the xml.dom
package.

2 Here is the one line of code that does all the work: minidom.parse takes one argument
and returns a parsed representation of the XML document. The argument can be many
things; in this case, it’s simply a filename of an XML document on my local disk. (To follow
along, you’ll need to change the path to point to your downloaded examples directory.)
But you can also pass a file object, or even a file-like object. You’ll take advantage of this
flexibility later in this chapter.

3 The object returned from minidom.parse is a Document object, a descendant of the Node
class. This Document object is the root level of a complex tree-like structure of interlocking
Python objects that completely represent the XML document you passed to minidom.parse.

4 toxml is a method of the Node class (and is therefore available on the Document object
you got from minidom.parse). toxml prints out the XML that this Node represents. For
the Document node, this prints out the entire XML document.

Now that you have an XML document in memory, you can start traversing through it.

Example 9.9. Getting child nodes

> xmldoc.childNodes 1

[<DOM Element: grammar at 17538908>]
> xmldoc.childNodes[0] 2

<DOM Element: grammar at 17538908>
> xmldoc.firstChild 3

<DOM Element: grammar at 17538908>

1 Every Node has a childNodes attribute, which is a list of the Node objects. A Document
always has only one child node, the root element of the XML document (in this case, the
grammar element).

2 To get the first (and in this case, the only) child node, just use regular list syntax. Remem-
ber, there is nothing special going on here; this is just a regular Python list of regular Python
objects.

3 Since getting the first child node of a node is a useful and common activity, the Node class
has a firstChild attribute, which is synonymous with childNodes[0]. (There is also a
lastChild attribute, which is synonymous with childNodes[-1].)

169

Example 9.10. toxml works on any node

> grammarNode = xmldoc.firstChild
> print grammarNode.toxml() 1

<grammar>
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

1 Since the toxml method is defined in the Node class, it is available on any XML node, not
just the Document element.

Example 9.11. Child nodes can be text

> grammarNode.childNodes 1

[<DOM Text node "\n">, <DOM Element: ref at 17533332>, \
<DOM Text node "\n">, <DOM Element: ref at 17549660>, <DOM Text node "\n">]
> print grammarNode.firstChild.toxml() 2

> print grammarNode.childNodes[1].toxml() 3

<ref id="bit">
<p>0</p>
<p>1</p>

</ref>
> print grammarNode.childNodes[3].toxml() 4

<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\

<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
> print grammarNode.lastChild.toxml() 5

1 Looking at the XML in binary.xml, you might think that the grammar has only two child
nodes, the two ref elements. But you’re missing something: the carriage returns! After
the ’<grammar>’ and before the first ’<ref>’ is a carriage return, and this text counts
as a child node of the grammar element. Similarly, there is a carriage return after each
’</ref>’; these also count as child nodes. So grammar.childNodes is actually a list of 5
objects: 3 Text objects and 2 Element objects.

2 The first child is a Text object representing the carriage return after the ’<grammar>’ tag
and before the first ’<ref>’ tag.

170

3 The second child is an Element object representing the first ref element.

4 The fourth child is an Element object representing the second ref element.

5 The last child is a Text object representing the carriage return after the ’</ref>’ end tag
and before the ’</grammar>’ end tag.

Example 9.12. Drilling down all the way to text

> grammarNode
<DOM Element: grammar at 19167148>
> refNode = grammarNode.childNodes[1] 1

> refNode
<DOM Element: ref at 17987740>
> refNode.childNodes 2

[<DOM Text node "\n">, <DOM Text node " ">, <DOM Element: p at 19315844>, \
<DOM Text node "\n">, <DOM Text node " ">, \
<DOM Element: p at 19462036>, <DOM Text node "\n">]
> pNode = refNode.childNodes[2]
> pNode
<DOM Element: p at 19315844>
> print pNode.toxml() 3

<p>0</p>
> pNode.firstChild 4

<DOM Text node "0">
> pNode.firstChild.data 5

u’0’

1 As you saw in the previous example, the first ref element is grammarNode.childNodes[1],
since childNodes[0] is a Text node for the carriage return.

2 The ref element has its own set of child nodes, one for the carriage return, a separate one
for the spaces, one for the p element, and so forth.

3 You can even use the toxml method here, deeply nested within the document.

4 The p element has only one child node (you can’t tell that from this example, but look at
pNode.childNodes if you don’t believe me), and it is a Text node for the single character
’0’.

5 The .data attribute of a Text node gives you the actual string that the text node rep-
resents. But what is that ’u’ in front of the string? The answer to that deserves its own
section.

171

9.4 Unicode
Unicode is a system to represent characters from all the world’s different lan-
guages. When Python parses an XML document, all data is stored in memory as
unicode.

You’ll get to all that in a minute, but first, some background.

Historical note Before unicode, there were separate character encoding systems for each lan-
guage, each using the same numbers (0-255) to represent that language’s characters. Some
languages (like Russian) have multiple conflicting standards about how to represent the same
characters; other languages (like Japanese) have so many characters that they require multiple-
byte character sets. Exchanging documents between systems was difficult because there was
no way for a computer to tell for certain which character encoding scheme the document au-
thor had used; the computer only saw numbers, and the numbers could mean different things.
Then think about trying to store these documents in the same place (like in the same database
table); you would need to store the character encoding alongside each piece of text, and make
sure to pass it around whenever you passed the text around. Then think about multilingual
documents, with characters from multiple languages in the same document. (They typically
used escape codes to switch modes; poof, you’re in Russian koi8-r mode, so character 241
means this; poof, now you’re in Mac Greek mode, so character 241 means something else. And
so on.) These are the problems which unicode was designed to solve.

To solve these problems, unicode represents each character as a 2-byte number, from 0 to
65535.5 Each 2-byte number represents a unique character used in at least one of the world’s
languages. (Characters that are used in multiple languages have the same numeric code.)
There is exactly 1 number per character, and exactly 1 character per number. Unicode data is
never ambiguous.

Of course, there is still the matter of all these legacy encoding systems. 7-bit ASCII, for in-
stance, which stores English characters as numbers ranging from 0 to 127. (65 is capital “A”,
97 is lowercase “a”, and so forth.) English has a very simple alphabet, so it can be completely
expressed in 7-bit ASCII. Western European languages like French, Spanish, and German all
use an encoding system called ISO-8859-1 (also called “latin-1”), which uses the 7-bit ASCII
characters for the numbers 0 through 127, but then extends into the 128-255 range for char-
acters like n-with-a-tilde-over-it (241), and u-with-two-dots-over-it (252). And unicode uses
the same characters as 7-bit ASCII for 0 through 127, and the same characters as ISO-8859-1
for 128 through 255, and then extends from there into characters for other languages with the
remaining numbers, 256 through 65535.

This, sadly, is still an oversimplification. Unicode now has been extended to handle ancient Chinese, Korean, and5

Japanese texts, which had so many different characters that the 2-byte unicode system could not represent them
all. But Python doesn’t currently support that out of the box, and I don’t know if there is a project afoot to add it.
You’ve reached the limits of my expertise, sorry.

172

When dealing with unicode data, you may at some point need to convert the data back into one
of these other legacy encoding systems. For instance, to integrate with some other computer
system which expects its data in a specific 1-byte encoding scheme, or to print it to a non-
unicode-aware terminal or printer. Or to store it in an XML document which explicitly specifies
the encoding scheme.

And on that note, let’s get back to Python.

Python has had unicode support throughout the language since version 2.0. The XML package
uses unicode to store all parsed XML data, but you can use unicode anywhere.

Example 9.13. Introducing unicode

> s = u’Dive in’ 1

> s
u’Dive in’
> print s 2

Dive in

1 To create a unicode string instead of a regular ASCII string, add the letter “u” before the
string. Note that this particular string doesn’t have any non-ASCII characters. That’s fine;
unicode is a superset of ASCII (a very large superset at that), so any regular ASCII string
can also be stored as unicode.

2 When printing a string, Python will attempt to convert it to your default encoding, which
is usually ASCII. (More on this in a minute.) Since this unicode string is made up of char-
acters that are also ASCII characters, printing it has the same result as printing a normal
ASCII string; the conversion is seamless, and if you didn’t know that s was a unicode
string, you’d never notice the difference.

Example 9.14. Storing non-ASCII characters

> s = u’La Pe\xf1a’ 1

> print s 2

Traceback (innermost last):
File "<interactive input>", line 1, in ?

UnicodeError: ASCII encoding error: ordinal not in range(128)
> print s.encode(’latin-1’) 3

La Peña

1 The real advantage of unicode, of course, is its ability to store non-ASCII characters, like
the Spanish “Ãś” (n with a tilde over it). The unicode character code for the tilde-n is 0xf1
in hexadecimal (241 in decimal), which you can type like this: \xf1.

173

2 Remember I said that the print function attempts to convert a unicode string to ASCII
so it can print it? Well, that’s not going to work here, because your unicode string contains
non-ASCII characters, so Python raises a UnicodeError error.

3 Here’s where the conversion-from-unicode-to-other-encoding-schemes comes in. s is a
unicode string, but print can only print a regular string. To solve this problem, you call
the encode method, available on every unicode string, to convert the unicode string to a
regular string in the given encoding scheme, which you pass as a parameter. In this case,
you’re using latin-1 (also known as iso-8859-1), which includes the tilde-n (whereas
the default ASCII encoding scheme did not, since it only includes characters numbered 0
through 127).

Remember I said Python usually converted unicode to ASCII whenever it needed to make a
regular string out of a unicode string? Well, this default encoding scheme is an option which
you can customize.

Example 9.15. sitecustomize.py

sitecustomize.py 1

this file can be anywhere in your Python path,
but it usually goes in ${pythondir}/lib/site-packages/
import sys
sys.setdefaultencoding(’iso-8859-1’) 2

1 sitecustomize.py is a special script; Python will try to import it on startup, so any code
in it will be run automatically. As the comment mentions, it can go anywhere (as long as
import can find it), but it usually goes in the site-packages directory within your Python
lib directory.

2 setdefaultencoding function sets, well, the default encoding. This is the encoding
scheme that Python will try to use whenever it needs to auto-coerce a unicode string into a
regular string.

Example 9.16. Effects of setting the default encoding

> import sys
> sys.getdefaultencoding() 1

’iso-8859-1’
> s = u’La Pe\xf1a’
> print s 2

La Peña

1 This example assumes that you have made the changes listed in the previous example
to your sitecustomize.py file, and restarted Python. If your default encoding still says

174

’ascii’, you didn’t set up your sitecustomize.py properly, or you didn’t restart Python.
The default encoding can only be changed during Python startup; you can’t change it later.
(Due to some wacky programming tricks that I won’t get into right now, you can’t even call
sys.setdefaultencoding after Python has started up. Dig into site.py and search for
“setdefaultencoding” to find out how.)

2 Now that the default encoding scheme includes all the characters you use in your string,
Python has no problem auto-coercing the string and printing it.

Example 9.17. Specifying encoding in .py files

If you are going to be storing non-ASCII strings within your Python code, you’ll need to specify
the encoding of each individual .py file by putting an encoding declaration at the top of each
file. This declaration defines the .py file to be UTF-8:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Now, what about XML? Well, every XML document is in a specific encoding. Again, ISO-
8859-1 is a popular encoding for data in Western European languages. KOI8-R is popular for
Russian texts. The encoding, if specified, is in the header of the XML document.

Example 9.18. russiansample.xml

<?xml version="1.0" encoding="koi8-r"?> 1

<preface>
<title>Predislovie</title> 2

</preface>

1 This is a sample extract from a real Russian XML document; it’s part of a Russian transla-
tion of this very book. Note the encoding, koi8-r, specified in the header.

2 These are Cyrillic characters which, as far as I know, spell the Russian word for “Preface”.
If you open this file in a regular text editor, the characters will most likely like gibberish,
because they’re encoded using the koi8-r encoding scheme, but they’re being displayed
in iso-8859-1.

Example 9.19. Parsing russiansample.xml

> from xml.dom import minidom
> xmldoc = minidom.parse(’russiansample.xml’) 1

> title = xmldoc.getElementsByTagName(’title’)[0].firstChild.data
> title 2

u’\u041f\u0440\u0435\u0434\u0438\u0441\u043b\u043e\u0432\u0438\u0435’
> print title 3

175

Traceback (innermost last):
File "<interactive input>", line 1, in ?

UnicodeError: ASCII encoding error: ordinal not in range(128)
> convertedtitle = title.encode(’koi8-r’) 4

> convertedtitle
’\xf0\xd2\xc5\xc4\xc9\xd3\xcc\xcf\xd7\xc9\xc5’
> print convertedtitle 5

Predislovie

1 I’m assuming here that you saved the previous example as russiansample.xml in the
current directory. I am also, for the sake of completeness, assuming that you’ve changed
your default encoding back to ’ascii’ by removing your sitecustomize.py file, or at
least commenting out the setdefaultencoding line.

2 Note that the text data of the title tag (now in the title variable, thanks to that long
concatenation of Python functions which I hastily skipped over and, annoyingly, won’t
explain until the next section) -- the text data inside the XML document’s title element is
stored in unicode.

3 Printing the title is not possible, because this unicode string contains non-ASCII charac-
ters, so Python can’t convert it to ASCII because that doesn’t make sense.

4 You can, however, explicitly convert it to koi8-r, in which case you get a (regular, not
unicode) string of single-byte characters (f0, d2, c5, and so forth) that are the koi8-r-
encoded versions of the characters in the original unicode string.

5 Printing the koi8-r-encoded string will probably show gibberish on your screen, because
your Python IDE is interpreting those characters as iso-8859-1, not koi8-r. But at least
they do print. (And, if you look carefully, it’s the same gibberish that you saw when you
opened the original XML document in a non-unicode-aware text editor. Python converted
it from koi8-r into unicode when it parsed the XML document, and you’ve just converted
it back.)

To sum up, unicode itself is a bit intimidating if you’ve never seen it before, but unicode data
is really very easy to handle in Python. If your XML documents are all 7-bit ASCII (like the
examples in this chapter), you will literally never think about unicode. Python will convert
the ASCII data in the XML documents into unicode while parsing, and auto-coerce it back to
ASCII whenever necessary, and you’ll never even notice. But if you need to deal with that in
other languages, Python is ready.

Further reading

176

• Unicode.org is the home page of the unicode standard, including a brief technical introduction.

• Unicode Tutorial has some more examples of how to use Python’s unicode functions, in-
cluding how to force Python to coerce unicode into ASCII even when it doesn’t really want
to.

• PEP 263 goes into more detail about how and when to define a character encoding in your
.py files.

9.5 Searching for elements

Traversing XML documents by stepping through each node can be tedious. If
you’re looking for something in particular, buried deep within your XML docu-
ment, there is a shortcut you can use to find it quickly: getElementsByTagName.

For this section, you’ll be using the binary.xml grammar file, which looks like this:

Example 9.20. binary.xml

<?xml version="1.0"?>
<!DOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN"
"kgp.dtd">
<grammar>
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

It has two refs, ’bit’ and ’byte’. A bit is either a ’0’ or ’1’, and a byte is 8 bits.

Example 9.21. Introducing getElementsByTagName

> from xml.dom import minidom
> xmldoc = minidom.parse(’binary.xml’)
> reflist = xmldoc.getElementsByTagName(’ref’) 1

> reflist
[<DOM Element: ref at 136138108>, <DOM Element: ref at 136144292>]
> print reflist[0].toxml()
<ref id="bit">

<p>0</p>

http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html
http://www.python.org/peps/pep-0263.html

177

<p>1</p>
</ref>
> print reflist[1].toxml()
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>

1 getElementsByTagName takes one argument, the name of the element you wish to find.
It returns a list of Element objects, corresponding to the XML elements that have that name.
In this case, you find two ref elements.

Example 9.22. Every element is searchable

> firstref = reflist[0] 1

> print firstref.toxml()
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
> plist = firstref.getElementsByTagName("p") 2

> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>]
> print plist[0].toxml() 3

<p>0</p>
> print plist[1].toxml()
<p>1</p>

1 Continuing from the previous example, the first object in your reflist is the ’bit’ ref
element.

2 You can use the same getElementsByTagName method on this Element to find all the
<p> elements within the ’bit’ ref element.

3 Just as before, the getElementsByTagName method returns a list of all the elements it
found. In this case, you have two, one for each bit.

Example 9.23. Searching is actually recursive

> plist = xmldoc.getElementsByTagName("p") 1

> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>, <DOM Element: p at
136146124>]
> plist[0].toxml() 2

’<p>0</p>’
> plist[1].toxml()
’<p>1</p>’

178

> plist[2].toxml() 3

’<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>’

1 Note carefully the difference between this and the previous example. Previously, you
were searching for p elements within firstref, but here you are searching for p elements
within xmldoc, the root-level object that represents the entire XML document. This does
find the p elements nested within the ref elements within the root grammar element.

2 The first two p elements are within the first ref (the ’bit’ ref).

3 The last p element is the one within the second ref (the ’byte’ ref).

9.6 Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to
access them once you have parsed an XML document.

For this section, you’ll be using the binary.xml grammar file that you saw in the previous
section.

XML attributes and Python attributes
This section may be a little confusing, because of some overlapping terminology. Elements in
an XML document have attributes, and Python objects also have attributes. When you parse
an XML document, you get a bunch of Python objects that represent all the pieces of the XML
document, and some of these Python objects represent attributes of the XML elements. But the
(Python) objects that represent the (XML) attributes also have (Python) attributes, which are
used to access various parts of the (XML) attribute that the object represents. I told you it was
confusing. I am open to suggestions on how to distinguish these more clearly.

Example 9.24. Accessing element attributes

> xmldoc = minidom.parse(’binary.xml’)
> reflist = xmldoc.getElementsByTagName(’ref’)
> bitref = reflist[0]
> print bitref.toxml()
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
> bitref.attributes 1

<xml.dom.minidom.NamedNodeMap instance at 0x81e0c9c>
> bitref.attributes.keys() 2 3

179

[u’id’]
> bitref.attributes.values() 4

[<xml.dom.minidom.Attr instance at 0x81d5044>]
> bitref.attributes["id"] 5

<xml.dom.minidom.Attr instance at 0x81d5044>

1 Each Element object has an attribute called attributes, which is a NamedNodeMap ob-
ject. This sounds scary, but it’s not, because a NamedNodeMap is an object that acts like a
dictionary, so you already know how to use it.

2 Treating the NamedNodeMap as a dictionary, you can get a list of the names of the attributes
of this element by using attributes.keys(). This element has only one attribute, ’id’.

3 Attribute names, like all other text in an XML document, are stored in unicode.

4 Again treating the NamedNodeMap as a dictionary, you can get a list of the values of the
attributes by using attributes.values(). The values are themselves objects, of type
Attr. You’ll see how to get useful information out of this object in the next example.

5 Still treating the NamedNodeMap as a dictionary, you can access an individual attribute
by name, using normal dictionary syntax. (Readers who have been paying extra-close at-
tention will already know how the NamedNodeMap class accomplishes this neat trick: by
defining a __getitem__ special method. Other readers can take comfort in the fact that
they don’t need to understand how it works in order to use it effectively.)

Example 9.25. Accessing individual attributes

> a = bitref.attributes["id"]
> a
<xml.dom.minidom.Attr instance at 0x81d5044>
> a.name 1

u’id’
> a.value 2

u’bit’

1 The Attr object completely represents a single XML attribute of a single XML element.
The name of the attribute (the same name as you used to find this object in the bitref.attributes
NamedNodeMap pseudo-dictionary) is stored in a.name.

2 The actual text value of this XML attribute is stored in a.value.

Attributes have no order
Like a dictionary, attributes of an XML element have no ordering. Attributes may happen to
be listed in a certain order in the original XML document, and the Attr objects may happen

180

to be listed in a certain order when the XML document is parsed into Python objects, but these
orders are arbitrary and should carry no special meaning. You should always access individual
attributes by name, like the keys of a dictionary.

9.7 Segue

OK, that’s it for the hard-core XML stuff. The next chapter will continue to use
these same example programs, but focus on other aspects that make the program
more flexible: using streams for input processing, using getattr for method
dispatching, and using command-line flags to allow users to reconfigure the pro-
gram without changing the code.

Before moving on to the next chapter, you should be comfortable doing all of these things:

• Parsing XML documents using minidom, searching through the parsed document, and
accessing arbitrary element attributes and element children

• Organizing complex libraries into packages

• Converting unicode strings to different character encodings

181

10 Scripts and Streams

10.1 Abstracting input sources

One of Python’s greatest strengths is its dynamic binding, and one powerful use
of dynamic binding is the file-like object.

Many functions which require an input source could simply take a filename, go open the file
for reading, read it, and close it when they’re done. But they don’t. Instead, they take a file-like
object.

In the simplest case, a file-like object is any object with a read method with an optional size
parameter, which returns a string. When called with no size parameter, it reads everything
there is to read from the input source and returns all the data as a single string. When called
with a size parameter, it reads that much from the input source and returns that much data;
when called again, it picks up where it left off and returns the next chunk of data.

This is how reading from real files works; the difference is that you’re not limiting yourself to
real files. The input source could be anything: a file on disk, a web page, even a hard-coded
string. As long as you pass a file-like object to the function, and the function simply calls the
object’s read method, the function can handle any kind of input source without specific code
to handle each kind.

In case you were wondering how this relates to XML processing, minidom.parse is one such
function which can take a file-like object.

Example 10.1. Parsing XML from a file

> from xml.dom import minidom
> fsock = open(’binary.xml’) 1

> xmldoc = minidom.parse(fsock) 2

> fsock.close() 3

> print xmldoc.toxml() 4

<?xml version="1.0" ?>
<grammar>
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

182

1 First, you open the file on disk. This gives you a file object.

2 You pass the file object to minidom.parse, which calls the read method of fsock and
reads the XML document from the file on disk.

3 Be sure to call the close method of the file object after you’re done with it. minidom.parse
will not do this for you.

4 Calling the toxml() method on the returned XML document prints out the entire thing.

Well, that all seems like a colossal waste of time. After all, you’ve already seen that minidom.parse
can simply take the filename and do all the opening and closing nonsense automatically. And
it’s true that if you know you’re just going to be parsing a local file, you can pass the filename
and minidom.parse is smart enough to Do The Right ThingTM. But notice how similar -- and
easy -- it is to parse an XML document straight from the Internet.

Example 10.2. Parsing XML from a URL

> import urllib
> usock = urllib.urlopen(’http://slashdot.org/slashdot.rdf’) 1

> xmldoc = minidom.parse(usock) 2

> usock.close() 3

> print xmldoc.toxml() 4

<?xml version="1.0" ?>
<rdf:RDF xmlns="http://my.netscape.com/rdf/simple/0.9/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<channel>
<title>Slashdot</title>
<link>http://slashdot.org/</link>
<description>News for nerds, stuff that matters</description>
</channel>



<item>
<title>To HDTV or Not to HDTV?</title>
<link>http://slashdot.org/article.pl?sid=01/12/28/0421241</link>
</item>

[...snip...]

183

1 As you saw in a previous chapter, urlopen takes a web page URL and returns a file-like
object. Most importantly, this object has a read method which returns the HTML source of
the web page.

2 Now you pass the file-like object to minidom.parse, which obediently calls the read
method of the object and parses the XML data that the read method returns. The fact that
this XML data is now coming straight from a web page is completely irrelevant. minidom.parse
doesn’t know about web pages, and it doesn’t care about web pages; it just knows about
file-like objects.

3 As soon as you’re done with it, be sure to close the file-like object that urlopen gives you.

4 By the way, this URL is real, and it really is XML. It’s an XML representation of the current
headlines on Slashdot, a technical news and gossip site.

Example 10.3. Parsing XML from a string (the easy but inflexible way)

> contents = "<grammar><ref id=’bit’><p>0</p><p>1</p></ref></grammar>"
> xmldoc = minidom.parseString(contents) 1

> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

1 minidom has a method, parseString, which takes an entire XML document as a string
and parses it. You can use this instead of minidom.parse if you know you already have
your entire XML document in a string.

OK, so you can use the minidom.parse function for parsing both local files and remote URLs,
but for parsing strings, you use... a different function. That means that if you want to be able
to take input from a file, a URL, or a string, you’ll need special logic to check whether it’s a
string, and call the parseString function instead. How unsatisfying.

If there were a way to turn a string into a file-like object, then you could simply pass this object
to minidom.parse. And in fact, there is a module specifically designed for doing just that:
StringIO.

Example 10.4. Introducing StringIO

> contents = "<grammar><ref id=’bit’><p>0</p><p>1</p></ref></grammar>"
> import StringIO
> ssock = StringIO.StringIO(contents) 1

> ssock.read() 2

"<grammar><ref id=’bit’><p>0</p><p>1</p></ref></grammar>"
> ssock.read() 3

’’

http://slashdot.org/

184

> ssock.seek(0) 4

> ssock.read(15) 5

’<grammar><ref i’
> ssock.read(15)
"d=’bit’><p>0</p"
> ssock.read()
’><p>1</p></ref></grammar>’
> ssock.close() 6

1 The StringIO module contains a single class, also called StringIO, which allows you to
turn a string into a file-like object. The StringIO class takes the string as a parameter when
creating an instance.

2 Now you have a file-like object, and you can do all sorts of file-like things with it. Like
read, which returns the original string.

3 Calling read again returns an empty string. This is how real file objects work too; once
you read the entire file, you can’t read any more without explicitly seeking to the beginning
of the file. The StringIO object works the same way.

4 You can explicitly seek to the beginning of the string, just like seeking through a file, by
using the seek method of the StringIO object.

5 You can also read the string in chunks, by passing a size parameter to the read method.

6 At any time, read will return the rest of the string that you haven’t read yet. All of this is
exactly how file objects work; hence the term file-like object.

Example 10.5. Parsing XML from a string (the file-like object way)

> contents = "<grammar><ref id=’bit’><p>0</p><p>1</p></ref></grammar>"
> ssock = StringIO.StringIO(contents)
> xmldoc = minidom.parse(ssock) 1

> ssock.close()
> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

1 Now you can pass the file-like object (really a StringIO) to minidom.parse, which will
call the object’s read method and happily parse away, never knowing that its input came
from a hard-coded string.

So now you know how to use a single function, minidom.parse, to parse an XML document
stored on a web page, in a local file, or in a hard-coded string. For a web page, you use urlopen

185

to get a file-like object; for a local file, you use open; and for a string, you use StringIO. Now
let’s take it one step further and generalize these differences as well.

Example 10.6. openAnything

def openAnything(source): 1

try to open with urllib (if source is http, ftp, or file URL)
import urllib
try:

return urllib.urlopen(source) 2

except (IOError, OSError):
pass

try to open with native open function (if source is pathname)
try:

return open(source) 3

except (IOError, OSError):
pass

treat source as string
import StringIO
return StringIO.StringIO(str(source)) 4

1 The openAnything function takes a single parameter, source, and returns a file-like ob-
ject. source is a string of some sort; it can either be a URL (like ’http://slashdot.org/slashdot.rdf’),
a full or partial pathname to a local file (like ’binary.xml’), or a string that contains actual
XML data to be parsed.

2 First, you see if source is a URL. You do this through brute force: you try to open it as
a URL and silently ignore errors caused by trying to open something which is not a URL.
This is actually elegant in the sense that, if urllib ever supports new types of URLs in the
future, you will also support them without recoding. If urllib is able to open source, then
the return kicks you out of the function immediately and the following try statements
never execute.

3 On the other hand, if urllib yelled at you and told you that source wasn’t a valid URL,
you assume it’s a path to a file on disk and try to open it. Again, you don’t do anything
fancy to check whether source is a valid filename or not (the rules for valid filenames vary
wildly between different platforms anyway, so you’d probably get them wrong anyway).
Instead, you just blindly open the file, and silently trap any errors.

4 By this point, you need to assume that source is a string that has hard-coded data in it
(since nothing else worked), so you use StringIO to create a file-like object out of it and
return that. (In fact, since you’re using the str function, source doesn’t even need to be

186

a string; it could be any object, and you’ll use its string representation, as defined by its
__str__ special method.)

Now you can use this openAnything function in conjunction with minidom.parse to make a
function that takes a source that refers to an XML document somehow (either as a URL, or a
local filename, or a hard-coded XML document in a string) and parses it.

Example 10.7. Using openAnything in kgp.py

class KantGenerator:
def _load(self, source):

sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()
return xmldoc

10.2 Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard
output, and standard error. This section is for the rest of you.

Standard output and standard error (commonly abbreviated stdout and stderr) are pipes
that are built into every UNIX system. When you print something, it goes to the stdout
pipe; when your program crashes and prints out debugging information (like a traceback in
Python), it goes to the stderr pipe. Both of these pipes are ordinarily just connected to the
terminal window where you are working, so when a program prints, you see the output, and
when a program crashes, you see the debugging information. (If you’re working on a system
with a window-based Python IDE, stdout and stderr default to your “Interactive Window”.)

Example 10.8. Introducing stdout and stderr

> for i in range(3):
... print ’Dive in’ 1

Dive in
Dive in
Dive in
> import sys
> for i in range(3):
... sys.stdout.write(’Dive in’) 2

Dive inDive inDive in
> for i in range(3):
... sys.stderr.write(’Dive in’) 3

Dive inDive inDive in

187

1 As you saw in Example 6.9, you can use Python’s built-in range function to build simple
counter loops that repeat something a set number of times.

2 stdout is a file-like object; calling its write function will print out whatever string you
give it. In fact, this is what the print function really does; it adds a carriage return to the
end of the string you’re printing, and calls sys.stdout.write.

3 In the simplest case, stdout and stderr send their output to the same place: the Python
IDE (if you’re in one), or the terminal (if you’re running Python from the command line).
Like stdout, stderr does not add carriage returns for you; if you want them, add them
yourself.

stdout and stderr are both file-like objects, like the ones you discussed in Section 10.1, but
they are both write-only. They have no read method, only write. Still, they are file-like
objects, and you can assign any other file- or file-like object to them to redirect their output.

Example 10.9. Redirecting output

[you@localhost kgp]$ python stdout.py
Dive in
[you@localhost kgp]$ cat out.log
This message will be logged instead of displayed

(On Windows, you can use type instead of cat to display the contents of a file.)

If you have not already done so, you can download this and other examples used in this book.

#stdout.py
import sys

print ’Dive in’ 1

saveout = sys.stdout 2

fsock = open(’out.log’, ’w’) 3

sys.stdout = fsock 4

print ’This message will be logged instead of displayed’ 5

sys.stdout = saveout 6

fsock.close() 7

1 This will print to the IDE “Interactive Window” (or the terminal, if running the script from
the command line).

2 Always save stdout before redirecting it, so you can set it back to normal later.

3 Open a file for writing. If the file doesn’t exist, it will be created. If the file does exist, it
will be overwritten.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

188

4 Redirect all further output to the new file you just opened.

5 This will be “printed” to the log file only; it will not be visible in the IDE window or on
the screen.

6 Set stdout back to the way it was before you mucked with it.

7 Close the log file.

Redirecting stderr works exactly the same way, using sys.stderr instead of sys.stdout.

Example 10.10. Redirecting error information

[you@localhost kgp]$ python stderr.py
[you@localhost kgp]$ cat error.log
Traceback (most recent line last):

File "stderr.py", line 5, in ?
raise Exception, ’this error will be logged’

Exception: this error will be logged

If you have not already done so, you can download this and other examples used in this book.

#stderr.py
import sys

fsock = open(’error.log’, ’w’) 1

sys.stderr = fsock 2

raise Exception, ’this error will be logged’ 3 4

1 Open the log file where you want to store debugging information.

2 Redirect standard error by assigning the file object of the newly-opened log file to stderr.

3 Raise an exception. Note from the screen output that this does not print anything on
screen. All the normal traceback information has been written to error.log.

4 Also note that you’re not explicitly closing your log file, nor are you setting stderr back
to its original value. This is fine, since once the program crashes (because of the excep-
tion), Python will clean up and close the file for us, and it doesn’t make any difference
that stderr is never restored, since, as I mentioned, the program crashes and Python ends.
Restoring the original is more important for stdout, if you expect to go do other stuff
within the same script afterwards.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

189

Since it is so common to write error messages to standard error, there is a shorthand syntax
that can be used instead of going through the hassle of redirecting it outright.

Example 10.11. Printing to stderr

> print ’entering function’
entering function
> import sys
> print sys.stderr, ’entering function’ 1

entering function

1 This shorthand syntax of the print statement can be used to write to any open file, or
file-like object. In this case, you can redirect a single print statement to stderr without
affecting subsequent print statements.

Standard input, on the other hand, is a read-only file object, and it represents the data flowing
into the program from some previous program. This will likely not make much sense to classic
Mac OS users, or even Windows users unless you were ever fluent on the MS-DOS command
line. The way it works is that you can construct a chain of commands in a single line, so that
one program’s output becomes the input for the next program in the chain. The first program
simply outputs to standard output (without doing any special redirecting itself, just doing
normal print statements or whatever), and the next program reads from standard input, and
the operating system takes care of connecting one program’s output to the next program’s
input.

Example 10.12. Chaining commands

[you@localhost kgp]$ python kgp.py -g binary.xml 1

01100111
[you@localhost kgp]$ cat binary.xml 2

<?xml version="1.0"?>
<!DOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN"
"kgp.dtd">
<grammar>
<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>
[you@localhost kgp]$ cat binary.xml | python kgp.py -g - 3 4

10110001

190

1 As you saw in Section 9.1, this will print a string of eight random bits, 0 or 1.

2 This simply prints out the entire contents of binary.xml. (Windows users should use
type instead of cat.)

3 This prints the contents of binary.xml, but the “|” character, called the “pipe” character,
means that the contents will not be printed to the screen. Instead, they will become the
standard input of the next command, which in this case calls your Python script.

4 Instead of specifying a module (like binary.xml), you specify “-”, which causes your
script to load the grammar from standard input instead of from a specific file on disk.
(More on how this happens in the next example.) So the effect is the same as the first syntax,
where you specified the grammar filename directly, but think of the expansion possibilities
here. Instead of simply doing cat binary.xml, you could run a script that dynamically
generates the grammar, then you can pipe it into your script. It could come from anywhere:
a database, or some grammar-generating meta-script, or whatever. The point is that you
don’t need to change your kgp.py script at all to incorporate any of this functionality. All
you need to do is be able to take grammar files from standard input, and you can separate
all the other logic into another program.

So how does the script “know” to read from standard input when the grammar file is “-”? It’s
not magic; it’s just code.

Example 10.13. Reading from standard input in kgp.py

def openAnything(source):
if source == "-": 1

import sys
return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)
import urllib
try:

[... snip ...]

1 This is the openAnything function from toolbox.py, which you previously examined in
Section 10.1. All you’ve done is add three lines of code at the beginning of the function to
check if the source is “-”; if so, you return sys.stdin. Really, that’s it! Remember, stdin
is a file-like object with a read method, so the rest of the code (in kgp.py, where you call
openAnything) doesn’t change a bit.

191

10.3 Caching node lookups

kgp.py employs several tricks which may or may not be useful to you in your
XML processing. The first one takes advantage of the consistent structure of the
input documents to build a cache of nodes.

A grammar file defines a series of ref elements. Each ref contains one or more p elements,
which can contain a lot of different things, including xrefs. Whenever you encounter an xref,
you look for a corresponding ref element with the same id attribute, and choose one of the
ref element’s children and parse it. (You’ll see how this random choice is made in the next
section.)

This is how you build up the grammar: define ref elements for the smallest pieces, then define
ref elements which "include" the first ref elements by using xref, and so forth. Then you
parse the "largest" reference and follow each xref, and eventually output real text. The text
you output depends on the (random) decisions you make each time you fill in an xref, so the
output is different each time.

This is all very flexible, but there is one downside: performance. When you find an xref
and need to find the corresponding ref element, you have a problem. The xref has an id
attribute, and you want to find the ref element that has that same id attribute, but there is no
easy way to do that. The slow way to do it would be to get the entire list of ref elements each
time, then manually loop through and look at each id attribute. The fast way is to do that once
and build a cache, in the form of a dictionary.

Example 10.14. loadGrammar

def loadGrammar(self, grammar):
self.grammar = self._load(grammar)
self.refs = {} 1

for ref in self.grammar.getElementsByTagName("ref"): 2

self.refs[ref.attributes["id"].value] = ref 3 4

1 Start by creating an empty dictionary, self.refs.

2 As you saw in Section 9.5, getElementsByTagName returns a list of all the elements of a
particular name. You easily can get a list of all the ref elements, then simply loop through
that list.

3 As you saw in Section 9.6, you can access individual attributes of an element by name,
using standard dictionary syntax. So the keys of the self.refs dictionary will be the
values of the id attribute of each ref element.

192

4 The values of the self.refs dictionary will be the ref elements themselves. As you saw
in Section 9.3, each element, each node, each comment, each piece of text in a parsed XML
document is an object.

Once you build this cache, whenever you come across an xref and need to find the ref ele-
ment with the same id attribute, you can simply look it up in self.refs.

Example 10.15. Using the ref element cache

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

You’ll explore the randomChildElement function in the next section.

10.4 Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct
child elements of a particular element. For instance, in the grammar files, a ref
element can have several p elements, each of which can contain many things,
including other p elements. You want to find just the p elements that are children
of the ref, not p elements that are children of other p elements.

You might think you could simply use getElementsByTagName for this, but you can’t. getEle-
mentsByTagName searches recursively and returns a single list for all the elements it finds.
Since p elements can contain other p elements, you can’t use getElementsByTagName, be-
cause it would return nested p elements that you don’t want. To find only direct child elements,
you’ll need to do it yourself.

Example 10.16. Finding direct child elements

def randomChildElement(self, node):
choices = [e for e in node.childNodes

if e.nodeType == e.ELEMENT_NODE] 1 2 3

chosen = random.choice(choices) 4

return chosen

1 As you saw in Example 9.9, the childNodes attribute returns a list of all the child nodes
of an element.

2 However, as you saw in Example 9.11, the list returned by childNodes contains all dif-
ferent types of nodes, including text nodes. That’s not what you’re looking for here. You
only want the children that are elements.

193

3 Each node has a nodeType attribute, which can be ELEMENT_NODE, TEXT_NODE, COMMENT_NODE,
or any number of other values. The complete list of possible values is in the __init__.py
file in the xml.dom package. (See Section 9.2 for more on packages.) But you’re just inter-
ested in nodes that are elements, so you can filter the list to only include those nodes whose
nodeType is ELEMENT_NODE.

4 Once you have a list of actual elements, choosing a random one is easy. Python comes
with a module called random which includes several useful functions. The random.choice
function takes a list of any number of items and returns a random item. For example, if the
ref elements contains several p elements, then choices would be a list of p elements, and
chosen would end up being assigned exactly one of them, selected at random.

10.5 Creating separate handlers by node type
The third useful XML processing tip involves separating your code into logical
functions, based on node types and element names. Parsed XML documents are
made up of various types of nodes, each represented by a Python object. The root
level of the document itself is represented by a Document object. The Document
then contains one or more Element objects (for actual XML tags), each of which
may contain other Element objects, Text objects (for bits of text), or Comment
objects (for embedded comments). Python makes it easy to write a dispatcher to
separate the logic for each node type.

Example 10.17. Class names of parsed XML objects

> from xml.dom import minidom
> xmldoc = minidom.parse(’kant.xml’) 1

> xmldoc
<xml.dom.minidom.Document instance at 0x01359DE8>
> xmldoc.__class__ 2

<class xml.dom.minidom.Document at 0x01105D40>
> xmldoc.__class__.__name__ 3

’Document’

1 Assume for a moment that kant.xml is in the current directory.

2 As you saw in Section 9.2, the object returned by parsing an XML document is a Document
object, as defined in the minidom.py in the xml.dom package. As you saw in Section 5.4,
__class__ is built-in attribute of every Python object.

3 Furthermore, __name__ is a built-in attribute of every Python class, and it is a string. This
string is not mysterious; it’s the same as the class name you type when you define a class
yourself. (See Section 5.3.)

194

Fine, so now you can get the class name of any particular XML node (since each XML node is
represented as a Python object). How can you use this to your advantage to separate the logic
of parsing each node type? The answer is getattr, which you first saw in Section 4.4.

Example 10.18. parse, a generic XML node dispatcher

def parse(self, node):
parseMethod = getattr(self, "parse_%s" % node.__class__.__name__) 1 2

parseMethod(node) 3

1 First off, notice that you’re constructing a larger string based on the class name of the node
you were passed (in the node argument). So if you’re passed a Document node, you’re
constructing the string ’parse_Document’, and so forth.

2 Now you can treat that string as a function name, and get a reference to the function itself
using getattr

3 Finally, you can call that function and pass the node itself as an argument. The next exam-
ple shows the definitions of each of these functions.

Example 10.19. Functions called by the parse dispatcher

def parse_Document(self, node): 1

self.parse(node.documentElement)

def parse_Text(self, node): 2

text = node.data
if self.capitalizeNextWord:

self.pieces.append(text[0].upper())
self.pieces.append(text[1:])
self.capitalizeNextWord = 0

else:
self.pieces.append(text)

def parse_Comment(self, node): 3

pass

def parse_Element(self, node): 4

handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

1 parse_Document is only ever called once, since there is only one Document node in an
XML document, and only one Document object in the parsed XML representation. It simply
turns around and parses the root element of the grammar file.

195

2 parse_Text is called on nodes that represent bits of text. The function itself does some
special processing to handle automatic capitalization of the first word of a sentence, but
otherwise simply appends the represented text to a list.

3 parse_Comment is just a pass, since you don’t care about embedded comments in the
grammar files. Note, however, that you still need to define the function and explicitly make
it do nothing. If the function did not exist, the generic parse function would fail as soon as
it stumbled on a comment, because it would try to find the non-existent parse_Comment
function. Defining a separate function for every node type, even ones you don’t use, allows
the generic parse function to stay simple and dumb.

4 The parse_Element method is actually itself a dispatcher, based on the name of the ele-
ment’s tag. The basic idea is the same: take what distinguishes elements from each other
(their tag names) and dispatch to a separate function for each of them. You construct a
string like ’do_xref’ (for an <xref> tag), find a function of that name, and call it. And
so forth for each of the other tag names that might be found in the course of parsing a
grammar file (<p> tags, <choice> tags).

In this example, the dispatch functions parse and parse_Element simply find other methods
in the same class. If your processing is very complex (or you have many different tag names),
you could break up your code into separate modules, and use dynamic importing to import
each module and call whatever functions you needed. Dynamic importing will be discussed
in Chapter 16.

10.6 Handling command-line arguments

Python fully supports creating programs that can be run on the command line,
complete with command-line arguments and either short- or long-style flags to
specify various options. None of this is XML-specific, but this script makes good
use of command-line processing, so it seemed like a good time to mention it.

It’s difficult to talk about command-line processing without understanding how command-
line arguments are exposed to your Python program, so let’s write a simple program to see
them.

Example 10.20. Introducing sys.argv

If you have not already done so, you can download this and other examples used in this book.

#argecho.py
import sys

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

196

for arg in sys.argv: 1

print arg

1 Each command-line argument passed to the program will be in sys.argv, which is just a
list. Here you are printing each argument on a separate line.

Example 10.21. The contents of sys.argv

[you@localhost py]$ python argecho.py 1

argecho.py
[you@localhost py]$ python argecho.py abc def 2

argecho.py
abc
def
[you@localhost py]$ python argecho.py –help 3

argecho.py
–help
[you@localhost py]$ python argecho.py -m kant.xml 4

argecho.py
-m
kant.xml

1 The first thing to know about sys.argv is that it contains the name of the script you’re
calling. You will actually use this knowledge to your advantage later, in Chapter 16. Don’t
worry about it for now.

2 Command-line arguments are separated by spaces, and each shows up as a separate ele-
ment in the sys.argv list.

3 Command-line flags, like –help, also show up as their own element in the sys.argv list.

4 To make things even more interesting, some command-line flags themselves take argu-
ments. For instance, here you have a flag (-m) which takes an argument (kant.xml). Both
the flag itself and the flag’s argument are simply sequential elements in the sys.argv list.
No attempt is made to associate one with the other; all you get is a list.

So as you can see, you certainly have all the information passed on the command line, but then
again, it doesn’t look like it’s going to be all that easy to actually use it. For simple programs
that only take a single argument and have no flags, you can simply use sys.argv[1] to access
the argument. There’s no shame in this; I do it all the time. For more complex programs, you
need the getopt module.

Example 10.22. Introducing getopt

def main(argv):
grammar = "kant.xml" 1

197

try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="]) 2

except getopt.GetoptError: 3

usage() 4

sys.exit(2)

...

if __name__ == "__main__":
main(sys.argv[1:])

1 First off, look at the bottom of the example and notice that you’re calling the main function
with sys.argv[1:]. Remember, sys.argv[0] is the name of the script that you’re run-
ning; you don’t care about that for command-line processing, so you chop it off and pass
the rest of the list.

2 This is where all the interesting processing happens. The getopt function of the getopt
module takes three parameters: the argument list (which you got from sys.argv[1:]),
a string containing all the possible single-character command-line flags that this program
accepts, and a list of longer command-line flags that are equivalent to the single-character
versions. This is quite confusing at first glance, and is explained in more detail below.

3 If anything goes wrong trying to parse these command-line flags, getopt will raise an
exception, which you catch. You told getopt all the flags you understand, so this probably
means that the end user passed some command-line flag that you don’t understand.

4 As is standard practice in the UNIX world, when the script is passed flags it doesn’t un-
derstand, you print out a summary of proper usage and exit gracefully. Note that I haven’t
shown the usage function here. You would still need to code that somewhere and have it
print out the appropriate summary; it’s not automatic.

So what are all those parameters you pass to the getopt function? Well, the first one is simply
the raw list of command-line flags and arguments (not including the first element, the script
name, which you already chopped off before calling the main function). The second is the list
of short command-line flags that the script accepts.

"hg:d"

-h

print usage summary

-g ...

use specified grammar file or URL

198

-d

show debugging information while parsing

The first and third flags are simply standalone flags; you specify them or you don’t, and they
do things (print help) or change state (turn on debugging). However, the second flag (-g) must
be followed by an argument, which is the name of the grammar file to read from. In fact it can
be a filename or a web address, and you don’t know which yet (you’ll figure it out later), but
you know it has to be something. So you tell getopt this by putting a colon after the g in that
second parameter to the getopt function.

To further complicate things, the script accepts either short flags (like -h) or long flags (like
–help), and you want them to do the same thing. This is what the third parameter to getopt
is for, to specify a list of the long flags that correspond to the short flags you specified in the
second parameter.

["help", "grammar="]

–help

print usage summary

–grammar ...

use specified grammar file or URL

Three things of note here:

1. All long flags are preceded by two dashes on the command line, but you don’t include
those dashes when calling getopt. They are understood.

2. The –grammar flag must always be followed by an additional argument, just like the -g
flag. This is notated by an equals sign, "grammar=".

3. The list of long flags is shorter than the list of short flags, because the -d flag does not have
a corresponding long version. This is fine; only -d will turn on debugging. But the order of
short and long flags needs to be the same, so you’ll need to specify all the short flags that
do have corresponding long flags first, then all the rest of the short flags.

Confused yet? Let’s look at the actual code and see if it makes sense in context.

Example 10.23. Handling command-line arguments in kgp.py

def main(argv): 1

grammar = "kant.xml"
try:

opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])

199

except getopt.GetoptError:
usage()
sys.exit(2)

for opt, arg in opts: 2

if opt in ("-h", "–help"): 3

usage()
sys.exit()

elif opt == ’-d’: 4

global _debug
_debug = 1

elif opt in ("-g", "–grammar"): 5

grammar = arg

source = "".join(args) 6

k = KantGenerator(grammar, source)
print k.output()

1 The grammar variable will keep track of the grammar file you’re using. You initialize it
here in case it’s not specified on the command line (using either the -g or the –grammar
flag).

2 The opts variable that you get back from getopt contains a list of tuples: flag and
argument. If the flag doesn’t take an argument, then arg will simply be None. This makes
it easier to loop through the flags.

3 getopt validates that the command-line flags are acceptable, but it doesn’t do any sort of
conversion between short and long flags. If you specify the -h flag, opt will contain "-h";
if you specify the –help flag, opt will contain "–help". So you need to check for both.

4 Remember, the -d flag didn’t have a corresponding long flag, so you only need to check
for the short form. If you find it, you set a global variable that you’ll refer to later to print
out debugging information. (I used this during the development of the script. What, you
thought all these examples worked on the first try?)

5 If you find a grammar file, either with a -g flag or a –grammar flag, you save the argument
that followed it (stored in arg) into the grammar variable, overwriting the default that you
initialized at the top of the main function.

6 That’s it. You’ve looped through and dealt with all the command-line flags. That means
that anything left must be command-line arguments. These come back from the getopt
function in the args variable. In this case, you’re treating them as source material for the
parser. If there are no command-line arguments specified, args will be an empty list, and
source will end up as the empty string.

200

10.7 Putting it all together

You’ve covered a lot of ground. Let’s step back and see how all the pieces fit
together.

To start with, this is a script that takes its arguments on the command line, using the getopt
module.

def main(argv):
...

try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])

except getopt.GetoptError:
...

for opt, arg in opts:
...

You create a new instance of the KantGenerator class, and pass it the grammar file and source
that may or may not have been specified on the command line.

k = KantGenerator(grammar, source)

The KantGenerator instance automatically loads the grammar, which is an XML file. You use
your custom openAnything function to open the file (which could be stored in a local file or
a remote web server), then use the built-in minidom parsing functions to parse the XML into
a tree of Python objects.

def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()

Oh, and along the way, you take advantage of your knowledge of the structure of the XML
document to set up a little cache of references, which are just elements in the XML document.

def loadGrammar(self, grammar):
for ref in self.grammar.getElementsByTagName("ref"):

self.refs[ref.attributes["id"].value] = ref

If you specified some source material on the command line, you use that; otherwise you rip
through the grammar looking for the "top-level" reference (that isn’t referenced by anything
else) and use that as a starting point.

def getDefaultSource(self):
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):

201

xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
return ’<xref id="%s"/>’ % random.choice(standaloneXrefs)

Now you rip through the source material. The source material is also XML, and you parse
it one node at a time. To keep the code separated and more maintainable, you use separate
handlers for each node type.

def parse_Element(self, node):
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

You bounce through the grammar, parsing all the children of each p element,

def do_p(self, node):
...

if doit:
for child in node.childNodes: self.parse(child)

replacing choice elements with a random child,

def do_choice(self, node):
self.parse(self.randomChildElement(node))

and replacing xref elements with a random child of the corresponding ref element, which
you previously cached.

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

Eventually, you parse your way down to plain text,

def parse_Text(self, node):
text = node.data

...
self.pieces.append(text)

which you print out.

def main(argv):
...

k = KantGenerator(grammar, source)
print k.output()

202

10.8 Summary

Python comes with powerful libraries for parsing and manipulating XML doc-
uments. The minidom takes an XML file and parses it into Python objects, pro-
viding for random access to arbitrary elements. Furthermore, this chapter shows
how Python can be used to create a "real" standalone command-line script, com-
plete with command-line flags, command-line arguments, error handling, even
the ability to take input from the piped result of a previous program.

Before moving on to the next chapter, you should be comfortable doing all of these things:

• Chaining programs with standard input and output

• Defining dynamic dispatchers with getattr.

• Using command-line flags and validating them with getopt

203

11 HTTP Web Services

11.1 Diving in

You’ve learned about HTML processing and XML processing, and along the
way you saw how to download a web page and how to parse XML from a URL,
but let’s dive into the more general topic of HTTP web services.

Simply stated, HTTP web services are programmatic ways of sending and receiving data from
remote servers using the operations of HTTP directly. If you want to get data from the server,
use a straight HTTP GET; if you want to send new data to the server, use HTTP POST. (Some
more advanced HTTP web service APIs also define ways of modifying existing data and delet-
ing data, using HTTP PUT and HTTP DELETE.) In other words, the “verbs” built into the
HTTP protocol (GET, POST, PUT, and DELETE) map directly to application-level operations
for receiving, sending, modifying, and deleting data.

The main advantage of this approach is simplicity, and its simplicity has proven popular with
a lot of different sites. Data -- usually XML data -- can be built and stored statically, or gener-
ated dynamically by a server-side script, and all major languages include an HTTP library for
downloading it. Debugging is also easier, because you can load up the web service in any web
browser and see the raw data. Modern browsers will even nicely format and pretty-print XML
data for you, to allow you to quickly navigate through it.

Examples of pure XML-over-HTTP web services:

• Amazon API allows you to retrieve product information from the Amazon.com online
store.

• National Weather Service (United States) and Hong Kong Observatory (Hong Kong) offer
weather alerts as a web service.

• Atom API for managing web-based content.

• Syndicated feeds from weblogs and news sites bring you up-to-the-minute news from a
variety of sites.

In later chapters, you’ll explore APIs which use HTTP as a transport for sending and receiving
data, but don’t map application semantics to the underlying HTTP semantics. (They tunnel
everything over HTTP POST.) But this chapter will concentrate on using HTTP GET to get
data from a remote server, and you’ll explore several HTTP features you can use to get the
maximum benefit out of pure HTTP web services.

http://www.amazon.com/webservices
http://www.amazon.com/webservices
http://www.nws.noaa.gov/alerts/
http://www.nws.noaa.gov/alerts/
http://www.nws.noaa.gov/alerts/
http://demo.xml.weather.gov.hk/
http://demo.xml.weather.gov.hk/
http://demo.xml.weather.gov.hk/
http://atomenabled.org/
http://atomenabled.org/
http://syndic8.com/
http://syndic8.com/

204

Here is a more advanced version of the openanything module that you saw in the previous
chapter:

Example 11.1. openanything.py

If you have not already done so, you can download this and other examples used in this book.

import urllib2, urlparse, gzip
from StringIO import StringIO

USER_AGENT = ’OpenAnything/1.0 +http://diveintopython.org/http_web_services/’

class SmartRedirectHandler(urllib2.HTTPRedirectHandler):
def http_error_301(self, req, fp, code, msg, headers):

result = urllib2.HTTPRedirectHandler.http_error_301(
self, req, fp, code, msg, headers)

result.status = code
return result

def http_error_302(self, req, fp, code, msg, headers):
result = urllib2.HTTPRedirectHandler.http_error_302(

self, req, fp, code, msg, headers)
result.status = code
return result

class DefaultErrorHandler(urllib2.HTTPDefaultErrorHandler):
def http_error_default(self, req, fp, code, msg, headers):

result = urllib2.HTTPError(
req.get_full_url(), code, msg, headers, fp)

result.status = code
return result

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
’’’URL, filename, or string --> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you’re done with it.

If the etag argument is supplied, it will be used as the value of an
If-None-Match request header.

If the lastmodified argument is supplied, it must be a formatted
date/time string in GMT (as returned in the Last-Modified header of
a previous request). The formatted date/time will be used
as the value of an If-Modified-Since request header.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

205

If the agent argument is supplied, it will be used as the value of a
User-Agent request header.
’’’

if hasattr(source, ’read’):
return source

if source == ’-’:
return sys.stdin

if urlparse.urlparse(source)[0] == ’http’:
open URL with urllib2
request = urllib2.Request(source)
request.add_header(’User-Agent’, agent)
if etag:

request.add_header(’If-None-Match’, etag)
if lastmodified:

request.add_header(’If-Modified-Since’, lastmodified)
request.add_header(’Accept-encoding’, ’gzip’)
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
return opener.open(request)

try to open with native open function (if source is a filename)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
return StringIO(str(source))

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
’’’Fetch data and metadata from a URL, file, stream, or string’’’
result = {}
f = openAnything(source, etag, last_modified, agent)
result[’data’] = f.read()
if hasattr(f, ’headers’):

save ETag, if the server sent one
result[’etag’] = f.headers.get(’ETag’)
save Last-Modified header, if the server sent one
result[’lastmodified’] = f.headers.get(’Last-Modified’)
if f.headers.get(’content-encoding’, ’’) == ’gzip’:

data came back gzip-compressed, decompress it
result[’data’] = gzip.GzipFile(fileobj=StringIO(result[’data’]])).read()

if hasattr(f, ’url’):
result[’url’] = f.url
result[’status’] = 200

if hasattr(f, ’status’):
result[’status’] = f.status

206

f.close()
return result

Further reading

• Paul Prescod believes that pure HTTP web services are the future of the Internet.

11.2 How not to fetch data over HTTP

Let’s say you want to download a resource over HTTP, such as a syndicated
Atom feed. But you don’t just want to download it once; you want to download
it over and over again, every hour, to get the latest news from the site that’s
offering the news feed. Let’s do it the quick-and-dirty way first, and then see
how you can do better.

Example 11.2. Downloading a feed the quick-and-dirty way

> import urllib
> data = urllib.urlopen(’http://diveintomark.org/xml/atom.xml’).read() 1

> print data
<?xml version="1.0" encoding="iso-8859-1"?>
<feed version="0.3"

xmlns="http://purl.org/atom/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<– rest of feed omitted for brevity –>

1 Downloading anything over HTTP is incredibly easy in Python; in fact, it’s a one-liner.
The urllib module has a handy urlopen function that takes the address of the page you
want, and returns a file-like object that you can just read() from to get the full contents of
the page. It just can’t get much easier.

So what’s wrong with this? Well, for a quick one-off during testing or development, there’s
nothing wrong with it. I do it all the time. I wanted the contents of the feed, and I got the
contents of the feed. The same technique works for any web page. But once you start thinking
in terms of a web service that you want to access on a regular basis -- and remember, you
said you were planning on retrieving this syndicated feed once an hour -- then you’re being
inefficient, and you’re being rude.

Let’s talk about some of the basic features of HTTP.

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

207

11.3 Features of HTTP

There are five important features of HTTP which you should support.

11.3.1 User-Agent

The User-Agent is simply a way for a client to tell a server who it is when it requests a web
page, a syndicated feed, or any sort of web service over HTTP. When the client requests a
resource, it should always announce who it is, as specifically as possible. This allows the
server-side administrator to get in touch with the client-side developer if anything is going
fantastically wrong.

By default, Python sends a generic User-Agent: Python-urllib/1.15. In the next section,
you’ll see how to change this to something more specific.

11.3.2 Redirects

Sometimes resources move around. Web sites get reorganized, pages move to new addresses.
Even web services can reorganize. A syndicated feed at http://example.com/index.xml
might be moved to http://example.com/xml/atom.xml. Or an entire domain might move,
as an organization expands and reorganizes; for instance, http://www.example.com/index.xml
might be redirected to http://server-farm-1.example.com/index.xml.

Every time you request any kind of resource from an HTTP server, the server includes a sta-
tus code in its response. Status code 200 means “everything’s normal, here’s the page you
asked for”. Status code 404 means “page not found”. (You’ve probably seen 404 errors while
browsing the web.)

HTTP has two different ways of signifying that a resource has moved. Status code 302 is a
temporary redirect ; it means “oops, that got moved over here temporarily” (and then gives
the temporary address in a Location: header). Status code 301 is a permanent redirect ; it
means “oops, that got moved permanently” (and then gives the new address in a Location:
header). If you get a 302 status code and a new address, the HTTP specification says you
should use the new address to get what you asked for, but the next time you want to access the
same resource, you should retry the old address. But if you get a 301 status code and a new
address, you’re supposed to use the new address from then on.

urllib.urlopen will automatically “follow” redirects when it receives the appropriate sta-
tus code from the HTTP server, but unfortunately, it doesn’t tell you when it does so. You’ll
end up getting data you asked for, but you’ll never know that the underlying library “help-
fully” followed a redirect for you. So you’ll continue pounding away at the old address, and
each time you’ll get redirected to the new address. That’s two round trips instead of one: not

208

very efficient! Later in this chapter, you’ll see how to work around this so you can deal with
permanent redirects properly and efficiently.

11.3.3 Last-Modified/If-Modified-Since

Some data changes all the time. The home page of CNN.com is constantly updating every
few minutes. On the other hand, the home page of Google.com only changes once every few
weeks (when they put up a special holiday logo, or advertise a new service). Web services
are no different; usually the server knows when the data you requested last changed, and
HTTP provides a way for the server to include this last-modified date along with the data you
requested.

If you ask for the same data a second time (or third, or fourth), you can tell the server the
last-modified date that you got last time: you send an If-Modified-Since header with your
request, with the date you got back from the server last time. If the data hasn’t changed since
then, the server sends back a special HTTP status code 304, which means “this data hasn’t
changed since the last time you asked for it”. Why is this an improvement? Because when the
server sends a 304, it doesn’t re-send the data. All you get is the status code. So you don’t
need to download the same data over and over again if it hasn’t changed; the server assumes
you have the data cached locally.

All modern web browsers support last-modified date checking. If you’ve ever visited a page,
re-visited the same page a day later and found that it hadn’t changed, and wondered why it
loaded so quickly the second time -- this could be why. Your web browser cached the contents
of the page locally the first time, and when you visited the second time, your browser automat-
ically sent the last-modified date it got from the server the first time. The server simply says
304: Not Modified, so your browser knows to load the page from its cache. Web services
can be this smart too.

Python’s URL library has no built-in support for last-modified date checking, but since you
can add arbitrary headers to each request and read arbitrary headers in each response, you can
add support for it yourself.

11.3.4 ETag/If-None-Match

ETags are an alternate way to accomplish the same thing as the last-modified date checking:
don’t re-download data that hasn’t changed. The way it works is, the server sends some sort
of hash of the data (in an ETag header) along with the data you requested. Exactly how this
hash is determined is entirely up to the server. The second time you request the same data,
you include the ETag hash in an If-None-Match: header, and if the data hasn’t changed, the
server will send you back a 304 status code. As with the last-modified date checking, the
server just sends the 304; it doesn’t send you the same data a second time. By including the

209

ETag hash in your second request, you’re telling the server that there’s no need to re-send the
same data if it still matches this hash, since you still have the data from the last time.

Python’s URL library has no built-in support for ETags, but you’ll see how to add it later in
this chapter.

11.3.5 Compression

The last important HTTP feature is gzip compression. When you talk about HTTP web ser-
vices, you’re almost always talking about moving XML back and forth over the wire. XML is
text, and quite verbose text at that, and text generally compresses well. When you request a
resource over HTTP, you can ask the server that, if it has any new data to send you, to please
send it in compressed format. You include the Accept-encoding: gzip header in your re-
quest, and if the server supports compression, it will send you back gzip-compressed data and
mark it with a Content-encoding: gzip header.

Python’s URL library has no built-in support for gzip compression per se, but you can add
arbitrary headers to the request. And Python comes with a separate gzip module, which has
functions you can use to decompress the data yourself.

Note that our little one-line script to download a syndicated feed did not support any of these
HTTP features. Let’s see how you can improve it.

11.4 Debugging HTTP web services

First, let’s turn on the debugging features of Python’s HTTP library and see
what’s being sent over the wire. This will be useful throughout the chapter, as
you add more and more features.

Example 11.3. Debugging HTTP

> import httplib
> httplib.HTTPConnection.debuglevel = 1 1

> import urllib
> feeddata = urllib.urlopen(’http://diveintomark.org/xml/atom.xml’).read()
connect: (diveintomark.org, 80) 2

send: ’
GET /xml/atom.xml HTTP/1.0 3

Host: diveintomark.org 4

User-agent: Python-urllib/1.15 5

’
reply: ’HTTP/1.1 200 OK\r\n’ 6

header: Date: Wed, 14 Apr 2004 22:27:30 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)

210

header: Content-Type: application/atom+xml
header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT 7

header: ETag: "e8284-68e0-4de30f80" 8

header: Accept-Ranges: bytes
header: Content-Length: 26848
header: Connection: close

1 urllib relies on another standard Python library, httplib. Normally you don’t need
to import httplib directly (urllib does that automatically), but you will here so you
can set the debugging flag on the HTTPConnection class that urllib uses internally to
connect to the HTTP server. This is an incredibly useful technique. Some other Python
libraries have similar debug flags, but there’s no particular standard for naming them or
turning them on; you need to read the documentation of each library to see if such a feature
is available.

2 Now that the debugging flag is set, information on the the HTTP request and response is
printed out in real time. The first thing it tells you is that you’re connecting to the server
diveintomark.org on port 80, which is the standard port for HTTP.

3 When you request the Atom feed, urllib sends three lines to the server. The first line
specifies the HTTP verb you’re using, and the path of the resource (minus the domain
name). All the requests in this chapter will use GET, but in the next chapter on SOAP, you’ll
see that it uses POST for everything. The basic syntax is the same, regardless of the verb.

4 The second line is the Host header, which specifies the domain name of the service you’re
accessing. This is important, because a single HTTP server can host multiple separate do-
mains. My server currently hosts 12 domains; other servers can host hundreds or even
thousands.

5 The third line is the User-Agent header. What you see here is the generic User-Agent
that the urllib library adds by default. In the next section, you’ll see how to customize
this to be more specific.

6 The server replies with a status code and a bunch of headers (and possibly some data,
which got stored in the feeddata variable). The status code here is 200, meaning “every-
thing’s normal, here’s the data you requested”. The server also tells you the date it re-
sponded to your request, some information about the server itself, and the content type
of the data it’s giving you. Depending on your application, this might be useful, or not.
It’s certainly reassuring that you thought you were asking for an Atom feed, and lo and
behold, you’re getting an Atom feed (application/atom+xml, which is the registered
content type for Atom feeds).

211

7 The server tells you when this Atom feed was last modified (in this case, about 13 minutes
ago). You can send this date back to the server the next time you request the same feed,
and the server can do last-modified checking.

8 The server also tells you that this Atom feed has an ETag hash of "e8284-68e0-4de30f80".
The hash doesn’t mean anything by itself; there’s nothing you can do with it, except send
it back to the server the next time you request this same feed. Then the server can use it to
tell you if the data has changed or not.

11.5 Setting the User-Agent
The first step to improving your HTTP web services client is to identify yourself
properly with a User-Agent. To do that, you need to move beyond the basic
urllib and dive into urllib2.

Example 11.4. Introducing urllib2

> import httplib
> httplib.HTTPConnection.debuglevel = 1 1

> import urllib2
> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’) 2

> opener = urllib2.build_opener() 3

> feeddata = opener.open(request).read() 4

connect: (diveintomark.org, 80)
send: ’
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 200 OK\r\n’
header: Date: Wed, 14 Apr 2004 23:23:12 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml
header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"
header: Accept-Ranges: bytes
header: Content-Length: 26848
header: Connection: close

1 If you still have your Python IDE open from the previous section’s example, you can skip
this, but this turns on HTTP debugging so you can see what you’re actually sending over
the wire, and what gets sent back.

2 Fetching an HTTP resource with urllib2 is a three-step process, for good reasons that
will become clear shortly. The first step is to create a Request object, which takes the

212

URL of the resource you’ll eventually get around to retrieving. Note that this step doesn’t
actually retrieve anything yet.

3 The second step is to build a URL opener. This can take any number of handlers, which
control how responses are handled. But you can also build an opener without any cus-
tom handlers, which is what you’re doing here. You’ll see how to define and use custom
handlers later in this chapter when you explore redirects.

4 The final step is to tell the opener to open the URL, using the Request object you created.
As you can see from all the debugging information that gets printed, this step actually
retrieves the resource and stores the returned data in feeddata.

Example 11.5. Adding headers with the Request

> request 1

<urllib2.Request instance at 0x00250AA8>
> request.get_full_url()
http://diveintomark.org/xml/atom.xml
> request.add_header(’User-Agent’,
... ’OpenAnything/1.0 +http://diveintopython.org/’) 2

> feeddata = opener.open(request).read() 3

connect: (diveintomark.org, 80)
send: ’
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User-agent: OpenAnything/1.0 +http://diveintopython.org/ 4

’
reply: ’HTTP/1.1 200 OK\r\n’
header: Date: Wed, 14 Apr 2004 23:45:17 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml
header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"
header: Accept-Ranges: bytes
header: Content-Length: 26848
header: Connection: close

1 You’re continuing from the previous example; you’ve already created a Request object
with the URL you want to access.

2 Using the add_header method on the Request object, you can add arbitrary HTTP head-
ers to the request. The first argument is the header, the second is the value you’re providing
for that header. Convention dictates that a User-Agent should be in this specific format:
an application name, followed by a slash, followed by a version number. The rest is free-
form, and you’ll see a lot of variations in the wild, but somewhere it should include a URL

213

of your application. The User-Agent is usually logged by the server along with other de-
tails of your request, and including a URL of your application allows server administrators
looking through their access logs to contact you if something is wrong.

3 The opener object you created before can be reused too, and it will retrieve the same feed
again, but with your custom User-Agent header.

4 And here’s you sending your custom User-Agent, in place of the generic one that Python
sends by default. If you look closely, you’ll notice that you defined a User-Agent header,
but you actually sent a User-agent header. See the difference? urllib2 changed the case
so that only the first letter was capitalized. It doesn’t really matter; HTTP specifies that
header field names are completely case-insensitive.

11.6 Handling Last-Modified and ETag
Now that you know how to add custom HTTP headers to your web service re-
quests, let’s look at adding support for Last-Modified and ETag headers.

These examples show the output with debugging turned off. If you still have it turned on from
the previous section, you can turn it off by setting httplib.HTTPConnection.debuglevel
= 0. Or you can just leave debugging on, if that helps you.

Example 11.6. Testing Last-Modified

> import urllib2
> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)
> opener = urllib2.build_opener()
> firstdatastream = opener.open(request)
> firstdatastream.headers.dict 1

{’date’: ’Thu, 15 Apr 2004 20:42:41 GMT’,
’server’: ’Apache/2.0.49 (Debian GNU/Linux)’,
’content-type’: ’application/atom+xml’,
’last-modified’: ’Thu, 15 Apr 2004 19:45:21 GMT’,
’etag’: ’"e842a-3e53-55d97640"’,
’content-length’: ’15955’,
’accept-ranges’: ’bytes’,
’connection’: ’close’}

> request.add_header(’If-Modified-Since’,
... firstdatastream.headers.get(’Last-Modified’)) 2

> seconddatastream = opener.open(request) 3

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\lib\urllib2.py", line 326, in open

’_open’, req)
File "c:\python23\lib\urllib2.py", line 306, in _call_chain

214

result = func(*args)
File "c:\python23\lib\urllib2.py", line 901, in http_open

return self.do_open(httplib.HTTP, req)
File "c:\python23\lib\urllib2.py", line 895, in do_open

return self.parent.error(’http’, req, fp, code, msg, hdrs)
File "c:\python23\lib\urllib2.py", line 352, in error

return self._call_chain(*args)
File "c:\python23\lib\urllib2.py", line 306, in _call_chain

result = func(*args)
File "c:\python23\lib\urllib2.py", line 412, in http_error_default

raise HTTPError(req.get_full_url(), code, msg, hdrs, fp)
urllib2.HTTPError: HTTP Error 304: Not Modified

1 Remember all those HTTP headers you saw printed out when you turned on debugging?
This is how you can get access to them programmatically: firstdatastream.headers is
an object that acts like a dictionary and allows you to get any of the individual headers
returned from the HTTP server.

2 On the second request, you add the If-Modified-Since header with the last-modified
date from the first request. If the data hasn’t changed, the server should return a 304 status
code.

3 Sure enough, the data hasn’t changed. You can see from the traceback that urllib2
throws a special exception, HTTPError, in response to the 304 status code. This is a lit-
tle unusual, and not entirely helpful. After all, it’s not an error; you specifically asked the
server not to send you any data if it hadn’t changed, and the data didn’t change, so the
server told you it wasn’t sending you any data. That’s not an error; that’s exactly what you
were hoping for.

urllib2 also raises an HTTPError exception for conditions that you would think of as errors,
such as 404 (page not found). In fact, it will raise HTTPError for any status code other than
200 (OK), 301 (permanent redirect), or 302 (temporary redirect). It would be more helpful for
your purposes to capture the status code and simply return it, without throwing an exception.
To do that, you’ll need to define a custom URL handler.

Example 11.7. Defining URL handlers

This custom URL handler is part of openanything.py.

class DefaultErrorHandler(urllib2.HTTPDefaultErrorHandler): 1

def http_error_default(self, req, fp, code, msg, headers): 2

result = urllib2.HTTPError(
req.get_full_url(), code, msg, headers, fp)

result.status = code 3

return result

215

1 urllib2 is designed around URL handlers. Each handler is just a class that can define
any number of methods. When something happens -- like an HTTP error, or even a 304
code -- urllib2 introspects into the list of defined handlers for a method that can handle
it. You used a similar introspection in Chapter 9 to define handlers for different node types,
but urllib2 is more flexible, and introspects over as many handlers as are defined for the
current request.

2 urllib2 searches through the defined handlers and calls the http_error_default method
when it encounters a 304 status code from the server. By defining a custom error handler,
you can prevent urllib2 from raising an exception. Instead, you create the HTTPError
object, but return it instead of raising it.

3 This is the key part: before returning, you save the status code returned by the HTTP
server. This will allow you easy access to it from the calling program.

Example 11.8. Using custom URL handlers

> request.headers 1

{’If-modified-since’: ’Thu, 15 Apr 2004 19:45:21 GMT’}
> import openanything
> opener = urllib2.build_opener(
... openanything.DefaultErrorHandler()) 2

> seconddatastream = opener.open(request)
> seconddatastream.status 3

304
> seconddatastream.read() 4

’’

1 You’re continuing the previous example, so the Request object is already set up, and
you’ve already added the If-Modified-Since header.

2 This is the key: now that you’ve defined your custom URL handler, you need to tell url-
lib2 to use it. Remember how I said that urllib2 broke up the process of accessing an
HTTP resource into three steps, and for good reason? This is why building the URL opener
is its own step, because you can build it with your own custom URL handlers that override
urllib2’s default behavior.

3 Now you can quietly open the resource, and what you get back is an object that, along with
the usual headers (use seconddatastream.headers.dict to acess them), also contains
the HTTP status code. In this case, as you expected, the status is 304, meaning this data
hasn’t changed since the last time you asked for it.

4 Note that when the server sends back a 304 status code, it doesn’t re-send the data. That’s
the whole point: to save bandwidth by not re-downloading data that hasn’t changed. So if
you actually want that data, you’ll need to cache it locally the first time you get it.

216

Handling ETag works much the same way, but instead of checking for Last-Modified and
sending If-Modified-Since, you check for ETag and send If-None-Match. Let’s start with
a fresh IDE session.

Example 11.9. Supporting ETag/If-None-Match

> import urllib2, openanything
> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)
> opener = urllib2.build_opener(
... openanything.DefaultErrorHandler())
> firstdatastream = opener.open(request)
> firstdatastream.headers.get(’ETag’) 1

’"e842a-3e53-55d97640"’
> firstdata = firstdatastream.read()
> print firstdata 2

<?xml version="1.0" encoding="iso-8859-1"?>
<feed version="0.3"

xmlns="http://purl.org/atom/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<– rest of feed omitted for brevity –>

> request.add_header(’If-None-Match’,
... firstdatastream.headers.get(’ETag’)) 3

> seconddatastream = opener.open(request)
> seconddatastream.status 4

304
> seconddatastream.read() 5

’’

1 Using the firstdatastream.headers pseudo-dictionary, you can get the ETag returned
from the server. (What happens if the server didn’t send back an ETag? Then this line
would return None.)

2 OK, you got the data.

3 Now set up the second call by setting the If-None-Match header to the ETag you got
from the first call.

4 The second call succeeds quietly (without throwing an exception), and once again you see
that the server has sent back a 304 status code. Based on the ETag you sent the second time,
it knows that the data hasn’t changed.

5 Regardless of whether the 304 is triggered by Last-Modified date checking or ETag hash
matching, you’ll never get the data along with the 304. That’s the whole point.

217

Support Last-Modified and ETag
In these examples, the HTTP server has supported both Last-Modified and ETag headers,
but not all servers do. As a web services client, you should be prepared to support both, but
you must code defensively in case a server only supports one or the other, or neither.

11.7 Handling redirects

You can support permanent and temporary redirects using a different kind of
custom URL handler.

First, let’s see why a redirect handler is necessary in the first place.

Example 11.10. Accessing web services without a redirect handler

> import urllib2, httplib
> httplib.HTTPConnection.debuglevel = 1 1

> request = urllib2.Request(
... ’http://diveintomark.org/redir/example301.xml’) 2

> opener = urllib2.build_opener()
> f = opener.open(request)
connect: (diveintomark.org, 80)
send: ’
GET /redir/example301.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 301 Moved Permanently\r\n’ 3

header: Date: Thu, 15 Apr 2004 22:06:25 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml 4

header: Content-Length: 338
header: Connection: close
header: Content-Type: text/html; charset=iso-8859-1
connect: (diveintomark.org, 80)
send: ’
GET /xml/atom.xml HTTP/1.0 5

Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 200 OK\r\n’
header: Date: Thu, 15 Apr 2004 22:06:25 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"
header: Accept-Ranges: bytes
header: Content-Length: 15955

218

header: Connection: close
header: Content-Type: application/atom+xml
> f.url 6

’http://diveintomark.org/xml/atom.xml’
> f.headers.dict
{’content-length’: ’15955’,
’accept-ranges’: ’bytes’,
’server’: ’Apache/2.0.49 (Debian GNU/Linux)’,
’last-modified’: ’Thu, 15 Apr 2004 19:45:21 GMT’,
’connection’: ’close’,
’etag’: ’"e842a-3e53-55d97640"’,
’date’: ’Thu, 15 Apr 2004 22:06:25 GMT’,
’content-type’: ’application/atom+xml’}
> f.status
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: addinfourl instance has no attribute ’status’

1 You’ll be better able to see what’s happening if you turn on debugging.

2 This is a URL which I have set up to permanently redirect to my Atom feed at http://diveintomark.org/xml/atom.xml.

3 Sure enough, when you try to download the data at that address, the server sends back a
301 status code, telling you that the resource has moved permanently.

4 The server also sends back a Location: header that gives the new address of this data.

5 urllib2 notices the redirect status code and automatically tries to retrieve the data at the
new location specified in the Location: header.

6 The object you get back from the opener contains the new permanent address and all the
headers returned from the second request (retrieved from the new permanent address). But
the status code is missing, so you have no way of knowing programmatically whether this
redirect was temporary or permanent. And that matters very much: if it was a temporary
redirect, then you should continue to ask for the data at the old location. But if it was a
permanent redirect (as this was), you should ask for the data at the new location from now
on.

This is suboptimal, but easy to fix. urllib2 doesn’t behave exactly as you want it to when it
encounters a 301 or 302, so let’s override its behavior. How? With a custom URL handler, just
like you did to handle 304 codes.

Example 11.11. Defining the redirect handler

This class is defined in openanything.py.

219

class SmartRedirectHandler(urllib2.HTTPRedirectHandler): 1

def http_error_301(self, req, fp, code, msg, headers):
result = urllib2.HTTPRedirectHandler.http_error_301(2

self, req, fp, code, msg, headers)
result.status = code 3

return result

def http_error_302(self, req, fp, code, msg, headers): 4

result = urllib2.HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)

result.status = code
return result

1 Redirect behavior is defined in urllib2 in a class called HTTPRedirectHandler. You
don’t want to completely override the behavior, you just want to extend it a little, so you’ll
subclass HTTPRedirectHandler so you can call the ancestor class to do all the hard work.

2 When it encounters a 301 status code from the server, urllib2 will search through its
handlers and call the http_error_301 method. The first thing ours does is just call the
http_error_301 method in the ancestor, which handles the grunt work of looking for the
Location: header and following the redirect to the new address.

3 Here’s the key: before you return, you store the status code (301), so that the calling
program can access it later.

4 Temporary redirects (status code 302) work the same way: override the http_error_302
method, call the ancestor, and save the status code before returning.

So what has this bought us? You can now build a URL opener with the custom redirect handler,
and it will still automatically follow redirects, but now it will also expose the redirect status
code.

Example 11.12. Using the redirect handler to detect permanent redirects

> request = urllib2.Request(’http://diveintomark.org/redir/example301.xml’)
> import openanything, httplib
> httplib.HTTPConnection.debuglevel = 1
> opener = urllib2.build_opener(
... openanything.SmartRedirectHandler()) 1

> f = opener.open(request)
connect: (diveintomark.org, 80)
send: ’GET /redir/example301.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 301 Moved Permanently\r\n’ 2

220

header: Date: Thu, 15 Apr 2004 22:13:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 338
header: Connection: close
header: Content-Type: text/html; charset=iso-8859-1
connect: (diveintomark.org, 80)
send: ’
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 200 OK\r\n’
header: Date: Thu, 15 Apr 2004 22:13:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"
header: Accept-Ranges: bytes
header: Content-Length: 15955
header: Connection: close
header: Content-Type: application/atom+xml

> f.status 3

301
> f.url
’http://diveintomark.org/xml/atom.xml’

1 First, build a URL opener with the redirect handler you just defined.

2 You sent off a request, and you got a 301 status code in response. At this point, the
http_error_301 method gets called. You call the ancestor method, which follows the redi-
rect and sends a request at the new location (http://diveintomark.org/xml/atom.xml).

3 This is the payoff: now, not only do you have access to the new URL, but you have access
to the redirect status code, so you can tell that this was a permanent redirect. The next time
you request this data, you should request it from the new location (http://diveintomark.org/xml/atom.xml,
as specified in f.url). If you had stored the location in a configuration file or a database,
you need to update that so you don’t keep pounding the server with requests at the old
address. It’s time to update your address book.

The same redirect handler can also tell you that you shouldn’t update your address book.

Example 11.13. Using the redirect handler to detect temporary redirects

> request = urllib2.Request(
... ’http://diveintomark.org/redir/example302.xml’) 1

> f = opener.open(request)

221

connect: (diveintomark.org, 80)
send: ’
GET /redir/example302.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 302 Found\r\n’ 2

header: Date: Thu, 15 Apr 2004 22:18:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 314
header: Connection: close
header: Content-Type: text/html; charset=iso-8859-1
connect: (diveintomark.org, 80)
send: ’
GET /xml/atom.xml HTTP/1.0 3

Host: diveintomark.org
User-agent: Python-urllib/2.1
’
reply: ’HTTP/1.1 200 OK\r\n’
header: Date: Thu, 15 Apr 2004 22:18:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"
header: Accept-Ranges: bytes
header: Content-Length: 15955
header: Connection: close
header: Content-Type: application/atom+xml
> f.status 4

302
> f.url
http://diveintomark.org/xml/atom.xml

1 This is a sample URL I’ve set up that is configured to tell clients to temporarily redirect to
http://diveintomark.org/xml/atom.xml.

2 The server sends back a 302 status code, indicating a temporary redirect. The temporary
new location of the data is given in the Location: header.

3 urllib2 calls your http_error_302 method, which calls the ancestor method of the
same name in urllib2.HTTPRedirectHandler, which follows the redirect to the new
location. Then your http_error_302 method stores the status code (302) so the calling
application can get it later.

4 And here you are, having successfully followed the redirect to http://diveintomark.org/xml/atom.xml.
f.status tells you that this was a temporary redirect, which means that you should con-
tinue to request data from the original address (http://diveintomark.org/redir/example302.xml).

222

Maybe it will redirect next time too, but maybe not. Maybe it will redirect to a different ad-
dress. It’s not for you to say. The server said this redirect was only temporary, so you should
respect that. And now you’re exposing enough information that the calling application can
respect that.

11.8 Handling compressed data

The last important HTTP feature you want to support is compression. Many
web services have the ability to send data compressed, which can cut down the
amount of data sent over the wire by 60% or more. This is especially true of XML
web services, since XML data compresses very well.

Servers won’t give you compressed data unless you tell them you can handle it.

Example 11.14. Telling the server you would like compressed data

> import urllib2, httplib
> httplib.HTTPConnection.debuglevel = 1
> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)
> request.add_header(’Accept-encoding’, ’gzip’) 1

> opener = urllib2.build_opener()
> f = opener.open(request)
connect: (diveintomark.org, 80)
send: ’
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
Accept-encoding: gzip 2

’
reply: ’HTTP/1.1 200 OK\r\n’
header: Date: Thu, 15 Apr 2004 22:24:39 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"
header: Accept-Ranges: bytes
header: Vary: Accept-Encoding
header: Content-Encoding: gzip 3

header: Content-Length: 6289 4

header: Connection: close
header: Content-Type: application/atom+xml

1 This is the key: once you’ve created your Request object, add an Accept-encoding
header to tell the server you can accept gzip-encoded data. gzip is the name of the com-
pression algorithm you’re using. In theory there could be other compression algorithms,
but gzip is the compression algorithm used by 99% of web servers.

223

2 There’s your header going across the wire.

3 And here’s what the server sends back: the Content-Encoding: gzip header means
that the data you’re about to receive has been gzip-compressed.

4 The Content-Length header is the length of the compressed data, not the uncompressed
data. As you’ll see in a minute, the actual length of the uncompressed data was 15955, so
gzip compression cut your bandwidth by over 60%!

Example 11.15. Decompressing the data

> compresseddata = f.read() 1

> len(compresseddata)
6289
> import StringIO
> compressedstream = StringIO.StringIO(compresseddata) 2

> import gzip
> gzipper = gzip.GzipFile(fileobj=compressedstream) 3

> data = gzipper.read() 4

> print data 5

<?xml version="1.0" encoding="iso-8859-1"?>
<feed version="0.3"

xmlns="http://purl.org/atom/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<– rest of feed omitted for brevity –>

> len(data)
15955

1 Continuing from the previous example, f is the file-like object returned from the URL
opener. Using its read() method would ordinarily get you the uncompressed data, but
since this data has been gzip-compressed, this is just the first step towards getting the data
you really want.

2 OK, this step is a little bit of messy workaround. Python has a gzip module, which reads
(and actually writes) gzip-compressed files on disk. But you don’t have a file on disk, you
have a gzip-compressed buffer in memory, and you don’t want to write out a temporary
file just so you can uncompress it. So what you’re going to do is create a file-like object out
of the in-memory data (compresseddata), using the StringIO module. You first saw the
StringIO module in the previous chapter, but now you’ve found another use for it.

3 Now you can create an instance of GzipFile, and tell it that its “file” is the file-like object
compressedstream.

224

4 This is the line that does all the actual work: “reading” from GzipFile will decompress
the data. Strange? Yes, but it makes sense in a twisted kind of way. gzipper is a file-like
object which represents a gzip-compressed file. That “file” is not a real file on disk, though;
gzipper is really just “reading” from the file-like object you created with StringIO to
wrap the compressed data, which is only in memory in the variable compresseddata. And
where did that compressed data come from? You originally downloaded it from a remote
HTTP server by “reading” from the file-like object you built with urllib2.build_opener.
And amazingly, this all just works. Every step in the chain has no idea that the previous
step is faking it.

5 Look ma, real data. (15955 bytes of it, in fact.)

“But wait!” I hear you cry. “This could be even easier!” I know what you’re thinking. You’re
thinking that opener.open returns a file-like object, so why not cut out the StringIO mid-
dleman and just pass f directly to GzipFile? OK, maybe you weren’t thinking that, but don’t
worry about it, because it doesn’t work.

Example 11.16. Decompressing the data directly from the server

> f = opener.open(request) 1

> f.headers.get(’Content-Encoding’) 2

’gzip’
> data = gzip.GzipFile(fileobj=f).read() 3

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\lib\gzip.py", line 217, in read

self._read(readsize)
File "c:\python23\lib\gzip.py", line 252, in _read

pos = self.fileobj.tell() # Save current position
AttributeError: addinfourl instance has no attribute ’tell’

1 Continuing from the previous example, you already have a Request object set up with an
Accept-encoding: gzip header.

2 Simply opening the request will get you the headers (though not download any data yet).
As you can see from the returned Content-Encoding header, this data has been sent gzip-
compressed.

3 Since opener.open returns a file-like object, and you know from the headers that when
you read it, you’re going to get gzip-compressed data, why not simply pass that file-like
object directly to GzipFile? As you “read” from the GzipFile instance, it will “read” com-
pressed data from the remote HTTP server and decompress it on the fly. It’s a good idea,
but unfortunately it doesn’t work. Because of the way gzip compression works, GzipFile
needs to save its position and move forwards and backwards through the compressed file.

225

This doesn’t work when the “file” is a stream of bytes coming from a remote server; all
you can do with it is retrieve bytes one at a time, not move back and forth through the
data stream. So the inelegant hack of using StringIO is the best solution: download the
compressed data, create a file-like object out of it with StringIO, and then decompress the
data from that.

11.9 Putting it all together

You’ve seen all the pieces for building an intelligent HTTP web services client.
Now let’s see how they all fit together.

Example 11.17. The openanything function

This function is defined in openanything.py.

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
non-HTTP code omitted for brevity
if urlparse.urlparse(source)[0] == ’http’: 1

open URL with urllib2
request = urllib2.Request(source)
request.add_header(’User-Agent’, agent) 2

if etag:
request.add_header(’If-None-Match’, etag) 3

if lastmodified:
request.add_header(’If-Modified-Since’, lastmodified) 4

request.add_header(’Accept-encoding’, ’gzip’) 5

opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler()) 6

return opener.open(request) 7

1 urlparse is a handy utility module for, you guessed it, parsing URLs. It’s primary func-
tion, also called urlparse, takes a URL and splits it into a tuple of (scheme, domain, path,
params, query string parameters, and fragment identifier). Of these, the only thing you care
about is the scheme, to make sure that you’re dealing with an HTTP URL (which urllib2
can handle).

2 You identify yourself to the HTTP server with the User-Agent passed in by the calling
function. If no User-Agent was specified, you use a default one defined earlier in the
openanything.py module. You never use the default one defined by urllib2.

3 If an ETag hash was given, send it in the If-None-Match header.

4 If a last-modified date was given, send it in the If-Modified-Since header.

5 Tell the server you would like compressed data if possible.

226

6 Build a URL opener that uses both of the custom URL handlers: SmartRedirectHandler
for handling 301 and 302 redirects, and DefaultErrorHandler for handling 304, 404,
and other error conditions gracefully.

7 That’s it! Open the URL and return a file-like object to the caller.

Example 11.18. The fetch function

This function is defined in openanything.py.

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
’’’Fetch data and metadata from a URL, file, stream, or string’’’
result = {}
f = openAnything(source, etag, last_modified, agent) 1

result[’data’] = f.read() 2

if hasattr(f, ’headers’):
save ETag, if the server sent one
result[’etag’] = f.headers.get(’ETag’) 3

save Last-Modified header, if the server sent one
result[’lastmodified’] = f.headers.get(’Last-Modified’) 4

if f.headers.get(’content-encoding’, ’’) == ’gzip’: 5

data came back gzip-compressed, decompress it
result[’data’] = gzip.GzipFile(fileobj=StringIO(result[’data’]])).read()

if hasattr(f, ’url’): 6

result[’url’] = f.url
result[’status’] = 200

if hasattr(f, ’status’): 7

result[’status’] = f.status
f.close()
return result

1 First, you call the openAnything function with a URL, ETag hash, Last-Modified date,
and User-Agent.

2 Read the actual data returned from the server. This may be compressed; if so, you’ll
decompress it later.

3 Save the ETag hash returned from the server, so the calling application can pass it back to
you next time, and you can pass it on to openAnything, which can stick it in the If-None-
Match header and send it to the remote server.

4 Save the Last-Modified date too.

5 If the server says that it sent compressed data, decompress it.

6 If you got a URL back from the server, save it, and assume that the status code is 200 until
you find out otherwise.

227

7 If one of the custom URL handlers captured a status code, then save that too.

Example 11.19. Using openanything.py

> import openanything
> useragent = ’MyHTTPWebServicesApp/1.0’
> url = ’http://diveintopython.org/redir/example301.xml’
> params = openanything.fetch(url, agent=useragent) 1

> params 2

{’url’: ’http://diveintomark.org/xml/atom.xml’,
’lastmodified’: ’Thu, 15 Apr 2004 19:45:21 GMT’,
’etag’: ’"e842a-3e53-55d97640"’,
’status’: 301,
’data’: ’<?xml version="1.0" encoding="iso-8859-1"?>
<feed version="0.3"
<– rest of data omitted for brevity –>’}
> if params[’status’] == 301: 3

... url = params[’url’]
> newparams = openanything.fetch(
... url, params[’etag’], params[’lastmodified’], useragent) 4

> newparams
{’url’: ’http://diveintomark.org/xml/atom.xml’,
’lastmodified’: None,
’etag’: ’"e842a-3e53-55d97640"’,
’status’: 304,
’data’: ’’} 5

1 The very first time you fetch a resource, you don’t have an ETag hash or Last-Modified
date, so you’ll leave those out. (They’re optional parameters.)

2 What you get back is a dictionary of several useful headers, the HTTP status code, and
the actual data returned from the server. openanything handles the gzip compression
internally; you don’t care about that at this level.

3 If you ever get a 301 status code, that’s a permanent redirect, and you need to update your
URL to the new address.

4 The second time you fetch the same resource, you have all sorts of information to pass
back: a (possibly updated) URL, the ETag from the last time, the Last-Modified date
from the last time, and of course your User-Agent.

5 What you get back is again a dictionary, but the data hasn’t changed, so all you got was a
304 status code and no data.

228

11.10 Summary

The openanything.py and its functions should now make perfect sense.

There are 5 important features of HTTP web services that every client should support:

• Identifying your application by setting a proper User-Agent.

• Handling permanent redirects properly.

• Supporting Last-Modified date checking to avoid re-downloading data that hasn’t changed.

• Supporting ETag hashes to avoid re-downloading data that hasn’t changed.

• Supporting gzip compression to reduce bandwidth even when data has changed.

229

12 SOAP Web Services

Abstract

Chapter 11 focused on document-oriented web services over HTTP. The “input
parameter” was the URL, and the “return value” was an actual XML document
which it was your responsibility to parse.

This chapter will focus on SOAP web services, which take a more structured
approach. Rather than dealing with HTTP requests and XML documents directly,
SOAP allows you to simulate calling functions that return native data types. As
you will see, the illusion is almost perfect; you can “call” a function through a
SOAP library, with the standard Python calling syntax, and the function appears
to return Python objects and values. But under the covers, the SOAP library has
actually performed a complex transaction involving multiple XML documents
and a remote server.

SOAP is a complex specification, and it is somewhat misleading to say that SOAP
is all about calling remote functions. Some people would pipe up to add that
SOAP allows for one-way asynchronous message passing, and document-oriented
web services. And those people would be correct; SOAP can be used that way,
and in many different ways. But this chapter will focus on so-called “RPC-
style” SOAP -- calling a remote function and getting results back.

12.1 Diving In

You use Google, right? It’s a popular search engine. Have you ever wished you
could programmatically access Google search results? Now you can. Here is a
program to search Google from Python.

Example 12.1. search.py

from SOAPpy import WSDL

you’ll need to configure these two values;
see http://www.google.com/apis/
WSDLFILE = ’/path/to/copy/of/GoogleSearch.wsdl’
APIKEY = ’YOUR_GOOGLE_API_KEY’

_server = WSDL.Proxy(WSDLFILE)
def search(q):

"""Search Google and return list of {title, link, description}"""

230

results = _server.doGoogleSearch(
APIKEY, q, 0, 10, False, "", False, "", "utf-8", "utf-8")

return [{"title": r.title.encode("utf-8"),
"link": r.URL.encode("utf-8"),
"description": r.snippet.encode("utf-8")}

for r in results.resultElements]

if __name__ == ’__main__’:
import sys
for r in search(sys.argv[1])[:5]:

print r[’title’]
print r[’link’]
print r[’description’]
print

You can import this as a module and use it from a larger program, or you can run the script
from the command line. On the command line, you give the search query as a command-line
argument, and it prints out the URL, title, and description of the top five Google search results.

Here is the sample output for a search for the word “python”.

Example 12.2. Sample Usage of search.py

C:\diveintopython\common\py> python search.py "python"
Python Programming Language
http://www.python.org/
Home page for Python, an interpreted, interactive, object-oriented,
extensible
 programming language. ... Python
is OSI Certified Open Source: OSI Certified.

Python Documentation Index
http://www.python.org/doc/
... New-style classes (aka descrintro). Regular expressions. Database

API. Email Us.
 docs@python.org. (c) 2004. Python
Software Foundation. Python Documentation. ...

Download Python Software
http://www.python.org/download/
Download Standard Python Software. Python 2.3.3 is the
current production
 version of Python. ...
Python is OSI Certified Open Source:

Pythonline
http://www.pythonline.com/

Dive Into Python
http://diveintopython.org/
Dive Into Python. Python from novice to pro. Find:

231

... It is also available in multiple
 languages. Read
Dive Into Python. This book is still being written. ...

Further Reading on SOAP

• http://www.xmethods.net/ is a repository of public access SOAP web services.

• The SOAP specification is surprisingly readable, if you like that sort of thing.

12.2 Installing the SOAP Libraries

Unlike the other code in this book, this chapter relies on libraries that do not
come pre-installed with Python.

Before you can dive into SOAP web services, you’ll need to install three libraries: PyXML,
fpconst, and SOAPpy.

12.2.1 Installing PyXML

The first library you need is PyXML, an advanced set of XML libraries that provide more
functionality than the built-in XML libraries we studied in Chapter 9.

Here is the procedure for installing PyXML:

1. Go to http://pyxml.sourceforge.net/, click Downloads, and download the latest ver-
sion for your operating system.

2. If you are using Windows, there are several choices. Make sure to download the version of
PyXML that matches the version of Python you are using.

3. Double-click the installer. If you download PyXML 0.8.3 for Windows and Python 2.3, the
installer program will be PyXML-0.8.3.win32-py2.3.exe.

4. Step through the installer program.

5. After the installation is complete, close the installer. There will not be any visible indication
of success (no programs installed on the Start Menu or shortcuts installed on the desktop).
PyXML is simply a collection of XML libraries used by other programs.

http://www.xmethods.net/
http://www.xmethods.net/
http://www.xmethods.net/
http://www.xmethods.net/
http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://pyxml.sourceforge.net/
http://pyxml.sourceforge.net/
http://pyxml.sourceforge.net/
http://pyxml.sourceforge.net/
http://pyxml.sourceforge.net/

232

To verify that you installed PyXML correctly, run your Python IDE and check the version of
the XML libraries you have installed, as shown here.

Example 12.3. Verifying PyXML Installation

>>> import xml
>>> xml.__version__
’0.8.3’

This version number should match the version number of the PyXML installer program you
downloaded and ran.

12.2.2 Installing fpconst

The second library you need is fpconst, a set of constants and functions for working with
IEEE754 double-precision special values. This provides support for the special values Not-a-
Number (NaN), Positive Infinity (Inf), and Negative Infinity (-Inf), which are part of the SOAP
datatype specification.

Here is the procedure for installing fpconst:

1. Download the latest version of fpconst from http://www.analytics.washington.edu
/statcomp/projects/rzope/fpconst/.

2. There are two downloads available, one in .tar.gz format, the other in .zip format. If
you are using Windows, download the .zip file; otherwise, download the .tar.gz file.

3. Decompress the downloaded file. On Windows XP, you can right-click on the file and
choose Extract All; on earlier versions of Windows, you will need a third-party program
such as WinZip. On Mac OS X, you can double-click the compressed file to decompress it
with Stuffit Expander.

4. Open a command prompt and navigate to the directory where you decompressed the fp-
const files.

5. Type python setup.py install to run the installation program.

To verify that you installed fpconst correctly, run your Python IDE and check the version num-
ber.

Example 12.4. Verifying fpconst Installation

>>> import fpconst
>>> fpconst.__version__
’0.6.0’

http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/

233

This version number should match the version number of the fpconst archive you downloaded
and installed.

12.2.3 Installing SOAPpy

The third and final requirement is the SOAP library itself: SOAPpy.

Here is the procedure for installing SOAPpy:

1. Go to http://pywebsvcs.sourceforge.net/ and select Latest Official Release under
the SOAPpy section.

2. There are two downloads available. If you are using Windows, download the .zip file;
otherwise, download the .tar.gz file.

3. Decompress the downloaded file, just as you did with fpconst.

4. Open a command prompt and navigate to the directory where you decompressed the
SOAPpy files.

5. Type python setup.py install to run the installation program.

To verify that you installed SOAPpy correctly, run your Python IDE and check the version
number.

Example 12.5. Verifying SOAPpy Installation

>>> import SOAPpy
>>> SOAPpy.__version__
’0.11.4’

This version number should match the version number of the SOAPpy archive you down-
loaded and installed.

12.3 First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number
of public access SOAP servers that provide simple functions for demonstration
purposes.

http://pywebsvcs.sourceforge.net/
http://pywebsvcs.sourceforge.net/
http://pywebsvcs.sourceforge.net/
http://pywebsvcs.sourceforge.net/
http://pywebsvcs.sourceforge.net/

234

The most popular public access SOAP server is http://www.xmethods.net/. This exam-
ple uses a demonstration function that takes a United States zip code and returns the current
temperature in that region.

Example 12.6. Getting the Current Temperature

> from SOAPpy import SOAPProxy 1

> url = ’http://services.xmethods.net:80/soap/servlet/rpcrouter’
> namespace = ’urn:xmethods-Temperature’ 2

> server = SOAPProxy(url, namespace) 3

> server.getTemp(’27502’) 4

80.0

1 You access the remote SOAP server through a proxy class, SOAPProxy. The proxy handles
all the internals of SOAP for you, including creating the XML request document out of
the function name and argument list, sending the request over HTTP to the remote SOAP
server, parsing the XML response document, and creating native Python values to return.
You’ll see what these XML documents look like in the next section.

2 Every SOAP service has a URL which handles all the requests. The same URL is used for
all function calls. This particular service only has a single function, but later in this chapter
you’ll see examples of the Google API, which has several functions. The service URL is
shared by all functions.

Each SOAP service also has a namespace, which is defined by the server and is completely
arbitrary. It’s simply part of the configuration required to call SOAP methods. It allows the
server to share a single service URL and route requests between several unrelated services.
It’s like dividing Python modules into packages.

3 You’re creating the SOAPProxy with the service URL and the service namespace. This
doesn’t make any connection to the SOAP server; it simply creates a local Python object.

4 Now with everything configured properly, you can actually call remote SOAP methods as
if they were local functions. You pass arguments just like a normal function, and you get a
return value just like a normal function. But under the covers, there’s a heck of a lot going
on.

Let’s peek under those covers.

12.4 Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what’s going on behind the
scenes.

http://www.xmethods.net/
http://www.xmethods.net/
http://www.xmethods.net/
http://www.xmethods.net/
http://www.xmethods.net/

235

Turning on debugging is a simple matter of setting two flags in the SOAPProxy’s configuration.

Example 12.7. Debugging SOAP Web Services

> from SOAPpy import SOAPProxy
> url = ’http://services.xmethods.net:80/soap/servlet/rpcrouter’
> n = ’urn:xmethods-Temperature’
> server = SOAPProxy(url, namespace=n) 1

> server.config.dumpSOAPOut = 1 2

> server.config.dumpSOAPIn = 1
> temperature = server.getTemp(’27502’) 3

*** Outgoing SOAP **
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getTemp xmlns:ns1="urn:xmethods-Temperature" SOAP-ENC:root="1">
<v1 xsi:type="xsd:string">27502</v1>
</ns1:getTemp>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
**
*** Incoming SOAP **
<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">80.0</return>
</ns1:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
**

> temperature
80.0

1 First, create the SOAPProxy like normal, with the service URL and the namespace.

2 Second, turn on debugging by setting server.config.dumpSOAPIn and server.config.dumpSOAPOut.

236

3 Third, call the remote SOAP method as usual. The SOAP library will print out both the
outgoing XML request document, and the incoming XML response document. This is all
the hard work that SOAPProxy is doing for you. Intimidating, isn’t it? Let’s break it down.

Most of the XML request document that gets sent to the server is just boilerplate. Ignore all the
namespace declarations; they’re going to be the same (or similar) for all SOAP calls. The heart
of the “function call” is this fragment within the <Body> element:

<ns1:getTemp 1

xmlns:ns1="urn:xmethods-Temperature" 2

SOAP-ENC:root="1">
<v1 xsi:type="xsd:string">27502</v1> 3

</ns1:getTemp>

1 The element name is the function name, getTemp. SOAPProxy uses getattr as a dispatcher.
Instead of calling separate local methods based on the method name, it actually uses the
method name to construct the XML request document.

2 The function’s XML element is contained in a specific namespace, which is the name-
space you specified when you created the SOAPProxy object. Don’t worry about the SOAP-
ENC:root; that’s boilerplate too.

3 The arguments of the function also got translated into XML. SOAPProxy introspects each
argument to determine its datatype (in this case it’s a string). The argument datatype goes
into the xsi:type attribute, followed by the actual string value.

The XML return document is equally easy to understand, once you know what to ignore. Focus
on this fragment within the <Body>:

<ns1:getTempResponse 1

xmlns:ns1="urn:xmethods-Temperature" 2

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">80.0</return> 3

</ns1:getTempResponse>

1 The server wraps the function return value within a <getTempResponse> element. By
convention, this wrapper element is the name of the function, plus Response. But it could
really be almost anything; the important thing that SOAPProxy notices is not the element
name, but the namespace.

2 The server returns the response in the same namespace we used in the request, the same
namespace we specified when we first create the SOAPProxy. Later in this chapter we’ll see
what happens if you forget to specify the namespace when creating the SOAPProxy.

237

3 The return value is specified, along with its datatype (it’s a float). SOAPProxy uses this
explicit datatype to create a Python object of the correct native datatype and return it.

12.5 Introducing WSDL

The SOAPProxy class proxies local method calls and transparently turns then into
invocations of remote SOAP methods. As you’ve seen, this is a lot of work, and
SOAPProxy does it quickly and transparently. What it doesn’t do is provide any
means of method introspection.

Consider this: the previous two sections showed an example of calling a simple remote SOAP
method with one argument and one return value, both of simple data types. This required
knowing, and keeping track of, the service URL, the service namespace, the function name,
the number of arguments, and the datatype of each argument. If any of these is missing or
wrong, the whole thing falls apart.

That shouldn’t come as a big surprise. If I wanted to call a local function, I would need to
know what package or module it was in (the equivalent of service URL and namespace). I
would need to know the correct function name and the correct number of arguments. Python
deftly handles datatyping without explicit types, but I would still need to know how many
argument to pass, and how many return values to expect.

The big difference is introspection. As you saw in Chapter 4, Python excels at letting you
discover things about modules and functions at runtime. You can list the available functions
within a module, and with a little work, drill down to individual function declarations and
arguments.

WSDL lets you do that with SOAP web services. WSDL stands for “Web Services Description
Language”. Although designed to be flexible enough to describe many types of web services,
it is most often used to describe SOAP web services.

A WSDL file is just that: a file. More specifically, it’s an XML file. It usually lives on the
same server you use to access the SOAP web services it describes, although there’s nothing
special about it. Later in this chapter, we’ll download the WSDL file for the Google API and
use it locally. That doesn’t mean we’re calling Google locally; the WSDL file still describes the
remote functions sitting on Google’s server.

A WSDL file contains a description of everything involved in calling a SOAP web service:

• The service URL and namespace

• The type of web service (probably function calls using SOAP, although as I mentioned,
WSDL is flexible enough to describe a wide variety of web services)

238

• The list of available functions

• The arguments for each function

• The datatype of each argument

• The return values of each function, and the datatype of each return value

In other words, a WSDL file tells you everything you need to know to be able to call a SOAP
web service.

12.6 Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered
history, full of political strife and intrigue. I will skip over this history entirely,
since it bores me to tears. There were other standards that tried to do similar
things, but WSDL won, so let’s learn how to use it.

The most fundamental thing that WSDL allows you to do is discover the available methods
offered by a SOAP server.

Example 12.8. Discovering The Available Methods

> from SOAPpy import WSDL 1

> wsdlFile = ’http://www.xmethods.net/sd/2001/TemperatureService.wsdl’)
> server = WSDL.Proxy(wsdlFile) 2

> server.methods.keys() 3

[u’getTemp’]

1 SOAPpy includes a WSDL parser. At the time of this writing, it was labeled as being in the
early stages of development, but I had no problem parsing any of the WSDL files I tried.

2 To use a WSDL file, you again use a proxy class, WSDL.Proxy, which takes a single argu-
ment: the WSDL file. Note that in this case you are passing in the URL of a WSDL file stored
on the remote server, but the proxy class works just as well with a local copy of the WSDL
file. The act of creating the WSDL proxy will download the WSDL file and parse it, so it
there are any errors in the WSDL file (or it can’t be fetched due to networking problems),
you’ll know about it immediately.

3 The WSDL proxy class exposes the available functions as a Python dictionary, server.methods.
So getting the list of available methods is as simple as calling the dictionary method keys().

239

Okay, so you know that this SOAP server offers a single method: getTemp. But how do you
call it? The WSDL proxy object can tell you that too.

Example 12.9. Discovering A Method’s Arguments

> callInfo = server.methods[’getTemp’] 1

> callInfo.inparams 2

[<SOAPpy.wstools.WSDLTools.ParameterInfo instance at 0x00CF3AD0>]
> callInfo.inparams[0].name 3

u’zipcode’
> callInfo.inparams[0].type 4

(u’http://www.w3.org/2001/XMLSchema’, u’string’)

1 The server.methods dictionary is filled with a SOAPpy-specific structure called Call-
Info. A CallInfo object contains information about one specific function, including the
function arguments.

2 The function arguments are stored in callInfo.inparams, which is a Python list of Pa-
rameterInfo objects that hold information about each parameter.

3 Each ParameterInfo object contains a name attribute, which is the argument name. You
are not required to know the argument name to call the function through SOAP, but SOAP
does support calling functions with named arguments (just like Python), and WSDL.Proxy
will correctly handle mapping named arguments to the remote function if you choose to
use them.

4 Each parameter is also explicitly typed, using datatypes defined in XML Schema. You saw
this in the wire trace in the previous section; the XML Schema namespace was part of the
“boilerplate” I told you to ignore. For our purposes here, you may continue to ignore it.
The zipcode parameter is a string, and if you pass in a Python string to the WSDL.Proxy
object, it will map it correctly and send it to the server.

WSDL also lets you introspect into a function’s return values.

Example 12.10. Discovering A Method’s Return Values

> callInfo.outparams 1

[<SOAPpy.wstools.WSDLTools.ParameterInfo instance at 0x00CF3AF8>]
> callInfo.outparams[0].name 2

u’return’
> callInfo.outparams[0].type
(u’http://www.w3.org/2001/XMLSchema’, u’float’)

240

1 The adjunct to callInfo.inparams for function arguments is callInfo.outparams for
return value. It is also a list, because functions called through SOAP can return multiple
values, just like Python functions.

2 Each ParameterInfo object contains name and type. This function returns a single value,
named return, which is a float.

Let’s put it all together, and call a SOAP web service through a WSDL proxy.

Example 12.11. Calling A Web Service Through A WSDL Proxy

> from SOAPpy import WSDL
> wsdlFile = ’http://www.xmethods.net/sd/2001/TemperatureService.wsdl’)
> server = WSDL.Proxy(wsdlFile) 1

> server.getTemp(’90210’) 2

66.0
> server.soapproxy.config.dumpSOAPOut = 1 3

> server.soapproxy.config.dumpSOAPIn = 1
> temperature = server.getTemp(’90210’)
*** Outgoing SOAP **
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getTemp xmlns:ns1="urn:xmethods-Temperature" SOAP-ENC:root="1">
<v1 xsi:type="xsd:string">90210</v1>
</ns1:getTemp>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
**
*** Incoming SOAP **
<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">66.0</return>
</ns1:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
**

241

> temperature
66.0

1 The configuration is simpler than calling the SOAP service directly, since the WSDL file
contains the both service URL and namespace you need to call the service. Creating the
WSDL.Proxy object downloads the WSDL file, parses it, and configures a SOAPProxy object
that it uses to call the actual SOAP web service.

2 Once the WSDL.Proxy object is created, you can call a function as easily as you did with
the SOAPProxy object. This is not surprising; the WSDL.Proxy is just a wrapper around the
SOAPProxy with some introspection methods added, so the syntax for calling functions is
the same.

3 You can access the WSDL.Proxy’s SOAPProxy with server.soapproxy. This is useful to
turning on debugging, so that when you can call functions through the WSDL proxy, its
SOAPProxy will dump the outgoing and incoming XML documents that are going over the
wire.

12.7 Searching Google
Let’s finally turn to the sample code that you saw that the beginning of this chap-
ter, which does something more useful and exciting than get the current temper-
ature.

Google provides a SOAP API for programmatically accessing Google search results. To use it,
you will need to sign up for Google Web Services.

1. Go to http://www.google.com/apis/ and create a Google account. This requires only
an email address. After you sign up you will receive your Google API license key by email.
You will need this key to pass as a parameter whenever you call Google’s search functions.

2. Also on http://www.google.com/apis/, download the Google Web APIs developer kit.
This includes some sample code in several programming languages (but not Python), and
more importantly, it includes the WSDL file.

3. Decompress the developer kit file and find GoogleSearch.wsdl. Copy this file to some
permanent location on your local drive. You will need it later in this chapter.

Once you have your developer key and your Google WSDL file in a known place, you can start
poking around with Google Web Services.

Example 12.12. Introspecting Google Web Services

> from SOAPpy import WSDL
> server = WSDL.Proxy(’/path/to/your/GoogleSearch.wsdl’) 1

http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/
http://www.google.com/apis/

242

> server.methods.keys() 2

[u’doGoogleSearch’, u’doGetCachedPage’, u’doSpellingSuggestion’]
> callInfo = server.methods[’doGoogleSearch’]
> for arg in callInfo.inparams: 3

... print arg.name.ljust(15), arg.type
key (u’http://www.w3.org/2001/XMLSchema’, u’string’)
q (u’http://www.w3.org/2001/XMLSchema’, u’string’)
start (u’http://www.w3.org/2001/XMLSchema’, u’int’)
maxResults (u’http://www.w3.org/2001/XMLSchema’, u’int’)
filter (u’http://www.w3.org/2001/XMLSchema’, u’boolean’)
restrict (u’http://www.w3.org/2001/XMLSchema’, u’string’)
safeSearch (u’http://www.w3.org/2001/XMLSchema’, u’boolean’)
lr (u’http://www.w3.org/2001/XMLSchema’, u’string’)
ie (u’http://www.w3.org/2001/XMLSchema’, u’string’)
oe (u’http://www.w3.org/2001/XMLSchema’, u’string’)

1 Getting started with Google web services is easy: just create a WSDL.Proxy object and
point it at your local copy of Google’s WSDL file.

2 According to the WSDL file, Google offers three functions: doGoogleSearch, doGet-
CachedPage, and doSpellingSuggestion. These do exactly what they sound like: per-
form a Google search and return the results programmatically, get access to the cached
version of a page from the last time Google saw it, and offer spelling suggestions for com-
monly misspelled search words.

3 The doGoogleSearch function takes a number of parameters of various types. Note that
while the WSDL file can tell you what the arguments are called and what datatype they
are, it can’t tell you what they mean or how to use them. It could theoretically tell you
the acceptable range of values for each parameter, if only specific values were allowed, but
Google’s WSDL file is not that detailed. WSDL.Proxy can’t work magic; it can only give
you the information provided in the WSDL file.

Here is a brief synopsis of all the parameters to the doGoogleSearch function:

• key - Your Google API key, which you received when you signed up for Google web ser-
vices.

• q - The search word or phrase you’re looking for. The syntax is exactly the same as Google’s
web form, so if you know any advanced search syntax or tricks, they all work here as well.

• start - The index of the result to start on. Like the interactive web version of Google, this
function returns 10 results at a time. If you wanted to get the second “page” of results, you
would set start to 10.

• maxResults - The number of results to return. Currently capped at 10, although you can
specify fewer if you are only interested in a few results and want to save a little bandwidth.

243

• filter - If True, Google will filter out duplicate pages from the results.

• restrict - Set this to country plus a country code to get results only from a particular
country. Example: countryUK to search pages in the United Kingdom. You can also specify
linux, mac, or bsd to search a Google-defined set of technical sites, or unclesam to search
sites about the United States government.

• safeSearch - If True, Google will filter out porn sites.

• lr (“language restrict”) - Set this to a language code to get results only in a particular
language.

• ie and oe (“input encoding” and “output encoding”) - Deprecated, both must be utf-8.

Example 12.13. Searching Google

> from SOAPpy import WSDL
> server = WSDL.Proxy(’/path/to/your/GoogleSearch.wsdl’)
> key = ’YOUR_GOOGLE_API_KEY’
> results = server.doGoogleSearch(key, ’mark’, 0, 10, False, "",
... False, "", "utf-8", "utf-8") 1

> len(results.resultElements) 2

10
> results.resultElements[0].URL 3

’http://diveintomark.org/’
> results.resultElements[0].title
’dive into mark’

1 After setting up the WSDL.Proxy object, you can call server.doGoogleSearch with all
ten parameters. Remember to use your own Google API key that you received when you
signed up for Google web services.

2 There’s a lot of information returned, but let’s look at the actual search results first. They’re
stored in results.resultElements, and you can access them just like a normal Python
list.

3 Each element in the resultElements is an object that has a URL, title, snippet, and
other useful attributes. At this point you can use normal Python introspection techniques
like dir(results.resultElements[0]) to see the available attributes. Or you can intro-
spect through the WSDL proxy object and look through the function’s outparams. Each
technique will give you the same information.

The results object contains more than the actual search results. It also contains information
about the search itself, such as how long it took and how many results were found (even

244

though only 10 were returned). The Google web interface shows this information, and you can
access it programmatically too.

Example 12.14. Accessing Secondary Information From Google

> results.searchTime 1

0.224919
> results.estimatedTotalResultsCount 2

29800000
> results.directoryCategories 3

[<SOAPpy.Types.structType item at 14367400>:
{’fullViewableName’:
’Top/Arts/Literature/World_Literature/American/19th_Century/Twain,_Mark’,
’specialEncoding’: ’’}]

> results.directoryCategories[0].fullViewableName
’Top/Arts/Literature/World_Literature/American/19th_Century/Twain,_Mark’

1 This search took 0.224919 seconds. That does not include the time spent sending and
receiving the actual SOAP XML documents. It’s just the time that Google spent processing
your request once it received it.

2 In total, there were approximately 30 million results. You can access them 10 at a time by
changing the start parameter and calling server.doGoogleSearch again.

3 For some queries, Google also returns a list of related categories in the Google Directory.
You can append these URLs to http://directory.google.com/ to construct the link to
the directory category page.

12.8 Troubleshooting SOAP Web Services

Of course, the world of SOAP web services is not all happiness and light. Some-
times things go wrong.

As you’ve seen throughout this chapter, SOAP involves several layers. There’s the HTTP layer,
since SOAP is sending XML documents to, and receiving XML documents from, an HTTP
server. So all the debugging techniques you learned in Chapter 11 come into play here. You
can import httplib and then set httplib.HTTPConnection.debuglevel = 1 to see the
underlying HTTP traffic.

Beyond the underlying HTTP layer, there are a number of things that can go wrong. SOAPpy
does an admirable job hiding the SOAP syntax from you, but that also means it can be difficult
to determine where the problem is when things don’t work.

http://directory.google.com/
http://directory.google.com/
http://directory.google.com/
http://directory.google.com/
http://directory.google.com/
http://directory.google.com/
http://directory.google.com/

245

Here are a few examples of common mistakes that I’ve made in using SOAP web services, and
the errors they generated.

Example 12.15. Calling a Method With an Incorrectly Configured Proxy

> from SOAPpy import SOAPProxy
> url = ’http://services.xmethods.net:80/soap/servlet/rpcrouter’
> server = SOAPProxy(url) 1

> server.getTemp(’27502’) 2

<Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element namespaced?>
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 453, in __call__

return self.__r_call(*args, **kw)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 475, in __r_call

self.__hd, self.__ma)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 389, in __call

raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element namespaced?>

1 Did you spot the mistake? You’re creating a SOAPProxy manually, and you’ve correctly
specified the service URL, but you haven’t specified the namespace. Since multiple services
may be routed through the same service URL, the namespace is essential to determine
which service you’re trying to talk to, and therefore which method you’re really calling.

2 The server responds by sending a SOAP Fault, which SOAPpy turns into a Python excep-
tion of type SOAPpy.Types.faultType. All errors returned from any SOAP server will
always be SOAP Faults, so you can easily catch this exception. In this case, the human-
readable part of the SOAP Fault gives a clue to the problem: the method element is not
namespaced, because the original SOAPProxy object was not configured with a service
namespace.

Misconfiguring the basic elements of the SOAP service is one of the problems that WSDL aims
to solve. The WSDL file contains the service URL and namespace, so you can’t get it wrong.
Of course, there are still other things you can get wrong.

Example 12.16. Calling a Method With the Wrong Arguments

> wsdlFile = ’http://www.xmethods.net/sd/2001/TemperatureService.wsdl’
> server = WSDL.Proxy(wsdlFile)
> temperature = server.getTemp(27502) 1

<Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) – no signature match> 2

Traceback (most recent call last):

246

File "<stdin>", line 1, in ?
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 453, in __call__

return self.__r_call(*args, **kw)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 475, in __r_call

self.__hd, self.__ma)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 389, in __call

raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) – no signature match>

1 Did you spot the mistake? It’s a subtle one: you’re calling server.getTemp with an
integer instead of a string. As you saw from introspecting the WSDL file, the getTemp()
SOAP function takes a single argument, zipcode, which must be a string. WSDL.Proxy
will not coerce datatypes for you; you need to pass the exact datatypes that the server
expects.

2 Again, the server returns a SOAP Fault, and the human-readable part of the error gives a
clue as to the problem: you’re calling a getTemp function with an integer value, but there
is no function defined with that name that takes an integer. In theory, SOAP allows you
to overload functions, so you could have two functions in the same SOAP service with
the same name and the same number of arguments, but the arguments were of different
datatypes. This is why it’s important to match the datatypes exactly, and why WSDL.Proxy
doesn’t coerce datatypes for you. If it did, you could end up calling a completely different
function! Good luck debugging that one. It’s much easier to be picky about datatypes and
fail as quickly as possible if you get them wrong.

It’s also possible to write Python code that expects a different number of return values than the
remote function actually returns.

Example 12.17. Calling a Method and Expecting the Wrong Number of Return Values

> wsdlFile = ’http://www.xmethods.net/sd/2001/TemperatureService.wsdl’
> server = WSDL.Proxy(wsdlFile)
> (city, temperature) = server.getTemp(27502) 1

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: unpack non-sequence

1 Did you spot the mistake? server.getTemp only returns one value, a float, but you’ve
written code that assumes you’re getting two values and trying to assign them to two dif-
ferent variables. Note that this does not fail with a SOAP fault. As far as the remote server
is concerned, nothing went wrong at all. The error only occurred after the SOAP transac-
tion was complete, WSDL.Proxy returned a float, and your local Python interpreter tried

247

to accomodate your request to split it into two different variables. Since the function only
returned one value, you get a Python exception trying to split it, not a SOAP Fault.

What about Google’s web service? The most common problem I’ve had with it is that I forget
to set the application key properly.

Example 12.18. Calling a Method With An Application-Specific Error

> from SOAPpy import WSDL
> server = WSDL.Proxy(r’/path/to/local/GoogleSearch.wsdl’)
> results = server.doGoogleSearch(’foo’, ’mark’, 0, 10, False, "", 1

... False, "", "utf-8", "utf-8")
<Fault SOAP-ENV:Server: 2

Exception from service object: Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{’stackTrace’:
’com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(

QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(

GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(

GoogleSearchService.java:121)
at sun.reflect.GeneratedMethodAccessor13.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(

RPCJavaProvider.java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(

RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection.java:195)
at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)

Caused by: com.google.soap.search.UserKeyInvalidException: Key was of wrong size.
at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(

QueryLimits.java:217)
... 14 more

’}>
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 453, in __call__

return self.__r_call(*args, **kw)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 475, in __r_call

248

self.__hd, self.__ma)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 389, in __call

raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception from service object:
Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{’stackTrace’:

’com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(

QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(

GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(

GoogleSearchService.java:121)
at sun.reflect.GeneratedMethodAccessor13.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(

RPCJavaProvider.java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(

RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection.java:195)
at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)

Caused by: com.google.soap.search.UserKeyInvalidException: Key was of wrong size.
at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(

QueryLimits.java:217)
... 14 more

’}>

1 Can you spot the mistake? There’s nothing wrong with the calling syntax, or the number
of arguments, or the datatypes. The problem is application-specific: the first argument is
supposed to be my application key, but foo is not a valid Google key.

2 The Google server responds with a SOAP Fault and an incredibly long error message,
which includes a complete Java stack trace. Remember that all SOAP errors are signified
by SOAP Faults: errors in configuration, errors in function arguments, and application-
specific errors like this. Buried in there somewhere is the crucial piece of information:
Invalid authorization key: foo.

Further Reading on Troubleshooting SOAP

249

• New developments for SOAPpy steps through trying to connect to another SOAP service
that doesn’t quite work as advertised.

12.9 Summary

SOAP web services are very complicated. The specification is very ambitious
and tries to cover many different use cases for web services. This chapter has
touched on some of the simpler use cases.

<highlights> Before diving into the next chapter, make sure you’re comfortable doing all of
these things:

• Connecting to a SOAP server and calling remote methods

• Loading a WSDL file and introspecting remote methods

• Debugging SOAP calls with wire traces

• Troubleshooting common SOAP-related errors

</highlights>

http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html
http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html
http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html
http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html

250

13 Unit Testing

13.1 Introduction to Roman numerals

In previous chapters, you “dived in” by immediately looking at code and trying
to understand it as quickly as possible. Now that you have some Python under
your belt, you’re going to step back and look at the steps that happen before the
code gets written.

In the next few chapters, you’re going to write, debug, and optimize a set of utility functions to
convert to and from Roman numerals. You saw the mechanics of constructing and validating
Roman numerals in Section 7.3, but now let’s step back and consider what it would take to
expand that into a two-way utility.

The rules for Roman numerals lead to a number of interesting observations:

1. There is only one correct way to represent a particular number as Roman numerals.

2. The converse is also true: if a string of characters is a valid Roman numeral, it represents
only one number (i.e. it can only be read one way).

3. There is a limited range of numbers that can be expressed as Roman numerals, specifically
1 through 3999. (The Romans did have several ways of expressing larger numbers, for
instance by having a bar over a numeral to represent that its normal value should be multi-
plied by 1000, but you’re not going to deal with that. For the purposes of this chapter, let’s
stipulate that Roman numerals go from 1 to 3999.)

4. There is no way to represent 0 in Roman numerals. (Amazingly, the ancient Romans had
no concept of 0 as a number. Numbers were for counting things you had; how can you
count what you don’t have?)

5. There is no way to represent negative numbers in Roman numerals.

6. There is no way to represent fractions or non-integer numbers in Roman numerals.

Given all of this, what would you expect out of a set of functions to convert to and from Roman
numerals?

roman.py requirements

1. toRoman should return the Roman numeral representation for all integers 1 to 3999.

2. toRoman should fail when given an integer outside the range 1 to 3999.

251

3. toRoman should fail when given a non-integer number.

4. fromRoman should take a valid Roman numeral and return the number that it represents.

5. fromRoman should fail when given an invalid Roman numeral.

6. If you take a number, convert it to Roman numerals, then convert that back to a number,
you should end up with the number you started with. So fromRoman(toRoman(n)) == n
for all n in 1..3999.

7. toRoman should always return a Roman numeral using uppercase letters.

8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given
lowercase input).

Further reading

• This site has more on Roman numerals, including a fascinating history of how Romans
and other civilizations really used them (short answer: haphazardly and inconsistently).

13.2 Diving in

Now that you’ve completely defined the behavior you expect from your conver-
sion functions, you’re going to do something a little unexpected: you’re going to
write a test suite that puts these functions through their paces and makes sure
that they behave the way you want them to. You read that right: you’re going to
write code that tests code that you haven’t written yet.

This is called unit testing, since the set of two conversion functions can be written and tested
as a unit, separate from any larger program they may become part of later. Python has a
framework for unit testing, the appropriately-named unittest module.

Do you have unittest?
unittest is included with Python 2.1 and later. Python 2.0 users can download it from
pyunit.sourceforge.net.

Unit testing is an important part of an overall testing-centric development strategy. If you
write unit tests, it is important to write them early (preferably before writing the code that
they test), and to keep them updated as code and requirements change. Unit testing is not a
replacement for higher-level functional or system testing, but it is important in all phases of
development:

http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm
http://pyunit.sourceforge.net/

252

• Before writing code, it forces you to detail your requirements in a useful fashion.

• While writing code, it keeps you from over-coding. When all the test cases pass, the func-
tion is complete.

• When refactoring code, it assures you that the new version behaves the same way as the
old version.

• When maintaining code, it helps you cover your ass when someone comes screaming that
your latest change broke their old code. (“But sir, all the unit tests passed when I checked
it in...”)

• When writing code in a team, it increases confidence that the code you’re about to commit
isn’t going to break other peoples’ code, because you can run their unittests first. (I’ve seen
this sort of thing in code sprints. A team breaks up the assignment, everybody takes the
specs for their task, writes unit tests for it, then shares their unit tests with the rest of the
team. That way, nobody goes off too far into developing code that won’t play well with
others.)

13.3 Introducing romantest.py
This is the complete test suite for your Roman numeral conversion functions,
which are yet to be written but will eventually be in roman.py. It is not immedi-
ately obvious how it all fits together; none of these classes or methods reference
any of the others. There are good reasons for this, as you’ll see shortly.

Example 13.1. romantest.py

If you have not already done so, you can download this and other examples used in this book.

"""Unit test for roman.py"""

import roman
import unittest

class KnownValues(unittest.TestCase):
knownValues = ((1, ’I’),

(2, ’II’),
(3, ’III’),
(4, ’IV’),
(5, ’V’),
(6, ’VI’),
(7, ’VII’),
(8, ’VIII’),
(9, ’IX’),

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

253

(10, ’X’),
(50, ’L’),
(100, ’C’),
(500, ’D’),
(1000, ’M’),
(31, ’XXXI’),
(148, ’CXLVIII’),
(294, ’CCXCIV’),
(312, ’CCCXII’),
(421, ’CDXXI’),
(528, ’DXXVIII’),
(621, ’DCXXI’),
(782, ’DCCLXXXII’),
(870, ’DCCCLXX’),
(941, ’CMXLI’),
(1043, ’MXLIII’),
(1110, ’MCX’),
(1226, ’MCCXXVI’),
(1301, ’MCCCI’),
(1485, ’MCDLXXXV’),
(1509, ’MDIX’),
(1607, ’MDCVII’),
(1754, ’MDCCLIV’),
(1832, ’MDCCCXXXII’),
(1993, ’MCMXCIII’),
(2074, ’MMLXXIV’),
(2152, ’MMCLII’),
(2212, ’MMCCXII’),
(2343, ’MMCCCXLIII’),
(2499, ’MMCDXCIX’),
(2574, ’MMDLXXIV’),
(2646, ’MMDCXLVI’),
(2723, ’MMDCCXXIII’),
(2892, ’MMDCCCXCII’),
(2975, ’MMCMLXXV’),
(3051, ’MMMLI’),
(3185, ’MMMCLXXXV’),
(3250, ’MMMCCL’),
(3313, ’MMMCCCXIII’),
(3408, ’MMMCDVIII’),
(3501, ’MMMDI’),
(3610, ’MMMDCX’),
(3743, ’MMMDCCXLIII’),
(3844, ’MMMDCCCXLIV’),
(3888, ’MMMDCCCLXXXVIII’),
(3940, ’MMMCMXL’),
(3999, ’MMMCMXCIX’))

254

def testToRomanKnownValues(self):
"""toRoman should give known result with known input"""
for integer, numeral in self.knownValues:

result = roman.toRoman(integer)
self.assertEqual(numeral, result)

def testFromRomanKnownValues(self):
"""fromRoman should give known result with known input"""
for integer, numeral in self.knownValues:

result = roman.fromRoman(numeral)
self.assertEqual(integer, result)

class ToRomanBadInput(unittest.TestCase):
def testTooLarge(self):

"""toRoman should fail with large input"""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000)

def testZero(self):
"""toRoman should fail with 0 input"""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0)

def testNegative(self):
"""toRoman should fail with negative input"""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, -1)

def testNonInteger(self):
"""toRoman should fail with non-integer input"""
self.assertRaises(roman.NotIntegerError, roman.toRoman, 0.5)

class FromRomanBadInput(unittest.TestCase):
def testTooManyRepeatedNumerals(self):

"""fromRoman should fail with too many repeated numerals"""
for s in (’MMMM’, ’DD’, ’CCCC’, ’LL’, ’XXXX’, ’VV’, ’IIII’):

self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testRepeatedPairs(self):
"""fromRoman should fail with repeated pairs of numerals"""
for s in (’CMCM’, ’CDCD’, ’XCXC’, ’XLXL’, ’IXIX’, ’IVIV’):

self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents"""
for s in (’IIMXCC’, ’VX’, ’DCM’, ’CMM’, ’IXIV’,

’MCMC’, ’XCX’, ’IVI’, ’LM’, ’LD’, ’LC’):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

class SanityCheck(unittest.TestCase):
def testSanity(self):

"""fromRoman(toRoman(n))==n for all n"""

255

for integer in range(1, 4000):
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):

"""toRoman should always return uppercase"""
for integer in range(1, 4000):

numeral = roman.toRoman(integer)
self.assertEqual(numeral, numeral.upper())

def testFromRomanCase(self):
"""fromRoman should only accept uppercase input"""
for integer in range(1, 4000):

numeral = roman.toRoman(integer)
roman.fromRoman(numeral.upper())
self.assertRaises(roman.InvalidRomanNumeralError,

roman.fromRoman, numeral.lower())

if __name__ == "__main__":
unittest.main()

Further reading

• The PyUnit home page has an in-depth discussion of using the unittest framework,
including advanced features not covered in this chapter.

• The PyUnit FAQ explains why test cases are stored separately from the code they test.

• Python Library Reference summarizes the unittest module.

• ExtremeProgramming.org discusses why you should write unit tests.

• The Portland Pattern Repository has an ongoing discussion of unit tests, including a
standard definition, why you should code unit tests first, and several in-depth case studies.

13.4 Testing for success

The most fundamental part of unit testing is constructing individual test cases.
A test case answers a single question about the code it is testing.

A test case should be able to...

http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial
http://www.c2.com/cgi/wiki?UnitTestTrial

256

• ...run completely by itself, without any human input. Unit testing is about automation.

• ...determine by itself whether the function it is testing has passed or failed, without a human
interpreting the results.

• ...run in isolation, separate from any other test cases (even if they test the same functions).
Each test case is an island.

Given that, let’s build the first test case. You have the following requirement:

1. toRoman should return the Roman numeral representation for all integers 1 to 3999.

Example 13.2. testToRomanKnownValues

class KnownValues(unittest.TestCase): 1

knownValues = ((1, ’I’),
(2, ’II’),
(3, ’III’),
(4, ’IV’),
(5, ’V’),
(6, ’VI’),
(7, ’VII’),
(8, ’VIII’),
(9, ’IX’),
(10, ’X’),
(50, ’L’),
(100, ’C’),
(500, ’D’),
(1000, ’M’),
(31, ’XXXI’),
(148, ’CXLVIII’),
(294, ’CCXCIV’),
(312, ’CCCXII’),
(421, ’CDXXI’),
(528, ’DXXVIII’),
(621, ’DCXXI’),
(782, ’DCCLXXXII’),
(870, ’DCCCLXX’),
(941, ’CMXLI’),
(1043, ’MXLIII’),
(1110, ’MCX’),
(1226, ’MCCXXVI’),
(1301, ’MCCCI’),
(1485, ’MCDLXXXV’),
(1509, ’MDIX’),
(1607, ’MDCVII’),
(1754, ’MDCCLIV’),
(1832, ’MDCCCXXXII’),

257

(1993, ’MCMXCIII’),
(2074, ’MMLXXIV’),
(2152, ’MMCLII’),
(2212, ’MMCCXII’),
(2343, ’MMCCCXLIII’),
(2499, ’MMCDXCIX’),
(2574, ’MMDLXXIV’),
(2646, ’MMDCXLVI’),
(2723, ’MMDCCXXIII’),
(2892, ’MMDCCCXCII’),
(2975, ’MMCMLXXV’),
(3051, ’MMMLI’),
(3185, ’MMMCLXXXV’),
(3250, ’MMMCCL’),
(3313, ’MMMCCCXIII’),
(3408, ’MMMCDVIII’),
(3501, ’MMMDI’),
(3610, ’MMMDCX’),
(3743, ’MMMDCCXLIII’),
(3844, ’MMMDCCCXLIV’),
(3888, ’MMMDCCCLXXXVIII’),
(3940, ’MMMCMXL’),
(3999, ’MMMCMXCIX’)) 2

def testToRomanKnownValues(self): 3

"""toRoman should give known result with known input"""
for integer, numeral in self.knownValues:

result = roman.toRoman(integer) 4 5

self.assertEqual(numeral, result) 6

1 To write a test case, first subclass the TestCase class of the unittest module. This class
provides many useful methods which you can use in your test case to test specific condi-
tions.

2 This is a list of integer/numeral pairs that I verified manually. It includes the lowest ten
numbers, the highest number, every number that translates to a single-character Roman
numeral, and a random sampling of other valid numbers. The point of a unit test is not to
test every possible input, but to test a representative sample.

3 Every individual test is its own method, which must take no parameters and return no
value. If the method exits normally without raising an exception, the test is considered
passed; if the method raises an exception, the test is considered failed.

4 Here you call the actual toRoman function. (Well, the function hasn’t be written yet, but
once it is, this is the line that will call it.) Notice that you have now defined the API for
the toRoman function: it must take an integer (the number to convert) and return a string

258

(the Roman numeral representation). If the API is different than that, this test is considered
failed.

5 Also notice that you are not trapping any exceptions when you call toRoman. This is
intentional. toRoman shouldn’t raise an exception when you call it with valid input, and
these input values are all valid. If toRoman raises an exception, this test is considered failed.

6 Assuming the toRoman function was defined correctly, called correctly, completed suc-
cessfully, and returned a value, the last step is to check whether it returned the right value.
This is a common question, and the TestCase class provides a method, assertEqual, to
check whether two values are equal. If the result returned from toRoman (result) does
not match the known value you were expecting (numeral), assertEqual will raise an ex-
ception and the test will fail. If the two values are equal, assertEqual will do nothing. If
every value returned from toRoman matches the known value you expect, assertEqual
never raises an exception, so testToRomanKnownValues eventually exits normally, which
means toRoman has passed this test.

13.5 Testing for failure

It is not enough to test that functions succeed when given good input; you must
also test that they fail when given bad input. And not just any sort of failure;
they must fail in the way you expect.

Remember the other requirements for toRoman:

2. toRoman should fail when given an integer outside the range 1 to 3999.

3. toRoman should fail when given a non-integer number.

In Python, functions indicate failure by raising exceptions, and the unittest module provides
methods for testing whether a function raises a particular exception when given bad input.

Example 13.3. Testing bad input to toRoman

class ToRomanBadInput(unittest.TestCase):
def testTooLarge(self):

"""toRoman should fail with large input"""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000) 1

def testZero(self):
"""toRoman should fail with 0 input"""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0) 2

259

def testNegative(self):
"""toRoman should fail with negative input"""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, -1)

def testNonInteger(self):
"""toRoman should fail with non-integer input"""
self.assertRaises(roman.NotIntegerError, roman.toRoman, 0.5) 3

1 The TestCase class of the unittest provides the assertRaises method, which takes
the following arguments: the exception you’re expecting, the function you’re testing, and
the arguments you’re passing that function. (If the function you’re testing takes more than
one argument, pass them all to assertRaises, in order, and it will pass them right along to
the function you’re testing.) Pay close attention to what you’re doing here: instead of call-
ing toRoman directly and manually checking that it raises a particular exception (by wrap-
ping it in a try...except block), assertRaises has encapsulated all of that for us. All you
do is give it the exception (roman.OutOfRangeError), the function (toRoman), and toRo-
man’s arguments (4000), and assertRaises takes care of calling toRoman and checking to
make sure that it raises roman.OutOfRangeError. (Also note that you’re passing the toRo-
man function itself as an argument; you’re not calling it, and you’re not passing the name
of it as a string. Have I mentioned recently how handy it is that everything in Python is an
object, including functions and exceptions?)

2 Along with testing numbers that are too large, you need to test numbers that are too
small. Remember, Roman numerals cannot express 0 or negative numbers, so you have
a test case for each of those (testZero and testNegative). In testZero, you are testing
that toRoman raises a roman.OutOfRangeError exception when called with 0; if it does
not raise a roman.OutOfRangeError (either because it returns an actual value, or because it
raises some other exception), this test is considered failed.

3 Requirement #3 specifies that toRoman cannot accept a non-integer number, so here you
test to make sure that toRoman raises a roman.NotIntegerError exception when called with
0.5. If toRoman does not raise a roman.NotIntegerError, this test is considered failed.

The next two requirements are similar to the first three, except they apply to fromRoman in-
stead of toRoman:

4. fromRoman should take a valid Roman numeral and return the number that it represents.

5. fromRoman should fail when given an invalid Roman numeral.

Requirement #4 is handled in the same way as requirement #1, iterating through a sampling
of known values and testing each in turn. Requirement #5 is handled in the same way as

260

requirements #2 and #3, by testing a series of bad inputs and making sure fromRoman raises
the appropriate exception.

Example 13.4. Testing bad input to fromRoman

class FromRomanBadInput(unittest.TestCase):
def testTooManyRepeatedNumerals(self):

"""fromRoman should fail with too many repeated numerals"""
for s in (’MMMM’, ’DD’, ’CCCC’, ’LL’, ’XXXX’, ’VV’, ’IIII’):

self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s) 1

def testRepeatedPairs(self):
"""fromRoman should fail with repeated pairs of numerals"""
for s in (’CMCM’, ’CDCD’, ’XCXC’, ’XLXL’, ’IXIX’, ’IVIV’):

self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents"""
for s in (’IIMXCC’, ’VX’, ’DCM’, ’CMM’, ’IXIV’,

’MCMC’, ’XCX’, ’IVI’, ’LM’, ’LD’, ’LC’):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

1 Not much new to say about these; the pattern is exactly the same as the one you used
to test bad input to toRoman. I will briefly note that you have another exception: ro-
man.InvalidRomanNumeralError. That makes a total of three custom exceptions that will
need to be defined in roman.py (along with roman.OutOfRangeError and roman.NotIntegerError).
You’ll see how to define these custom exceptions when you actually start writing ro-
man.py, later in this chapter.

13.6 Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions,
usually in the form of conversion functions where one converts A to B and the
other converts B to A. In these cases, it is useful to create a “sanity check” to
make sure that you can convert A to B and back to A without losing precision,
incurring rounding errors, or triggering any other sort of bug.

Consider this requirement:

6. If you take a number, convert it to Roman numerals, then convert that back to a number,
you should end up with the number you started with. So fromRoman(toRoman(n)) == n
for all n in 1..3999.

261

Example 13.5. Testing toRoman against fromRoman

class SanityCheck(unittest.TestCase):
def testSanity(self):

"""fromRoman(toRoman(n))==n for all n"""
for integer in range(1, 4000): 1 2

numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual(integer, result) 3

1 You’ve seen the range function before, but here it is called with two arguments, which
returns a list of integers starting at the first argument (1) and counting consecutively up to
but not including the second argument (4000). Thus, 1..3999, which is the valid range
for converting to Roman numerals.

2 I just wanted to mention in passing that integer is not a keyword in Python; here it’s just
a variable name like any other.

3 The actual testing logic here is straightforward: take a number (integer), convert it to
a Roman numeral (numeral), then convert it back to a number (result) and make sure
you end up with the same number you started with. If not, assertEqual will raise an
exception and the test will immediately be considered failed. If all the numbers match,
assertEqual will always return silently, the entire testSanity method will eventually
return silently, and the test will be considered passed.

The last two requirements are different from the others because they seem both arbitrary and
trivial:

7. toRoman should always return a Roman numeral using uppercase letters.

8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given
lowercase input).

In fact, they are somewhat arbitrary. You could, for instance, have stipulated that fromRoman
accept lowercase and mixed case input. But they are not completely arbitrary; if toRoman is
always returning uppercase output, then fromRoman must at least accept uppercase input, or
the “sanity check” (requirement #6) would fail. The fact that it only accepts uppercase input
is arbitrary, but as any systems integrator will tell you, case always matters, so it’s worth
specifying the behavior up front. And if it’s worth specifying, it’s worth testing.

Example 13.6. Testing for case

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):

262

"""toRoman should always return uppercase"""
for integer in range(1, 4000):

numeral = roman.toRoman(integer)
self.assertEqual(numeral, numeral.upper()) 1

def testFromRomanCase(self):
"""fromRoman should only accept uppercase input"""
for integer in range(1, 4000):

numeral = roman.toRoman(integer)
roman.fromRoman(numeral.upper()) 2 3

self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower()) 4

1 The most interesting thing about this test case is all the things it doesn’t test. It doesn’t
test that the value returned from toRoman is right or even consistent; those questions are
answered by separate test cases. You have a whole test case just to test for uppercase-ness.
You might be tempted to combine this with the sanity check, since both run through the
entire range of values and call toRoman.6 But that would violate one of the fundamental
rules: each test case should answer only a single question. Imagine that you combined
this case check with the sanity check, and then that test case failed. You would need to
do further analysis to figure out which part of the test case failed to determine what the
problem was. If you need to analyze the results of your unit testing just to figure out what
they mean, it’s a sure sign that you’ve mis-designed your test cases.

2 There’s a similar lesson to be learned here: even though “you know” that toRoman always
returns uppercase, you are explicitly converting its return value to uppercase here to test
that fromRoman accepts uppercase input. Why? Because the fact that toRoman always
returns uppercase is an independent requirement. If you changed that requirement so that,
for instance, it always returned lowercase, the testToRomanCase test case would need to
change, but this test case would still work. This was another of the fundamental rules:
each test case must be able to work in isolation from any of the others. Every test case is an
island.

3 Note that you’re not assigning the return value of fromRoman to anything. This is legal
syntax in Python; if a function returns a value but nobody’s listening, Python just throws
away the return value. In this case, that’s what you want. This test case doesn’t test any-
thing about the return value; it just tests that fromRoman accepts the uppercase input with-
out raising an exception.

“I can resist everything except temptation.” --Oscar Wilde6

263

4 This is a complicated line, but it’s very similar to what you did in the ToRomanBadIn-
put and FromRomanBadInput tests. You are testing to make sure that calling a partic-
ular function (roman.fromRoman) with a particular value (numeral.lower(), the low-
ercase version of the current Roman numeral in the loop) raises a particular exception
(roman.InvalidRomanNumeralError). If it does (each time through the loop), the test
passes; if even one time it does something else (like raises a different exception, or return-
ing a value without raising an exception at all), the test fails.

In the next chapter, you’ll see how to write code that passes these tests.

264

14 Test-First Programming

14.1 roman.py, stage 1

Now that the unit tests are complete, it’s time to start writing the code that the
test cases are attempting to test. You’re going to do this in stages, so you can see
all the unit tests fail, then watch them pass one by one as you fill in the gaps in
roman.py.

Example 14.1. roman1.py

This file is available in py/roman/stage1/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass 1

class OutOfRangeError(RomanError): pass 2

class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass 3

def toRoman(n):
"""convert integer to Roman numeral"""
pass 4

def fromRoman(s):
"""convert Roman numeral to integer"""
pass

1 This is how you define your own custom exceptions in Python. Exceptions are classes, and
you create your own by subclassing existing exceptions. It is strongly recommended (but
not required) that you subclass Exception, which is the base class that all built-in exceptions
inherit from. Here I am defining RomanError (inherited from Exception) to act as the base
class for all my other custom exceptions to follow. This is a matter of style; I could just as
easily have inherited each individual exception from the Exception class directly.

2 The OutOfRangeError and NotIntegerError exceptions will eventually be used by toRo-
man to flag various forms of invalid input, as specified in ToRomanBadInput.

3 The InvalidRomanNumeralError exception will eventually be used by fromRoman to flag
invalid input, as specified in FromRomanBadInput.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

265

4 At this stage, you want to define the API of each of your functions, but you don’t want to
code them yet, so you stub them out using the Python reserved word pass.

Now for the big moment (drum roll please): you’re finally going to run the unit test against
this stubby little module. At this point, every test case should fail. In fact, if any test case
passes in stage 1, you should go back to romantest.py and re-evaluate why you coded a test
so useless that it passes with do-nothing functions.

Run romantest1.py with the -v command-line option, which will give more verbose output
so you can see exactly what’s going on as each test case runs. With any luck, your output
should look like this:

Example 14.2. Output of romantest1.py against roman1.py

fromRoman should only accept uppercase input ... ERROR
toRoman should always return uppercase ... ERROR
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... FAIL
fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non-integer input ... FAIL
toRoman should fail with negative input ... FAIL
toRoman should fail with large input ... FAIL
toRoman should fail with 0 input ... FAIL

==
ERROR: fromRoman should only accept uppercase input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 154, in testFromRomanCase
roman1.fromRoman(numeral.upper())

AttributeError: ’None’ object has no attribute ’upper’
==
ERROR: toRoman should always return uppercase
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 148, in testToRomanCase
self.assertEqual(numeral, numeral.upper())

AttributeError: ’None’ object has no attribute ’upper’
==
FAIL: fromRoman should fail with malformed antecedents
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 133, in testMalformedAntecedent
self.assertRaises(roman1.InvalidRomanNumeralError, roman1.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises

266

raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 127, in testRepeatedPairs
self.assertRaises(roman1.InvalidRomanNumeralError, roman1.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman1.InvalidRomanNumeralError, roman1.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should give known result with known input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 99, in testFromRomanKnownValues
self.assertEqual(integer, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or ’%s != %s’ % (first, second))

AssertionError: 1 != None
==
FAIL: toRoman should give known result with known input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 93, in testToRomanKnownValues
self.assertEqual(numeral, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or ’%s != %s’ % (first, second))

AssertionError: I != None
==
FAIL: fromRoman(toRoman(n))==n for all n
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 141, in testSanity
self.assertEqual(integer, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or ’%s != %s’ % (first, second))

AssertionError: 1 != None
==
FAIL: toRoman should fail with non-integer input

267

–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 116, in testNonInteger
self.assertRaises(roman1.NotIntegerError, roman1.toRoman, 0.5)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: NotIntegerError
==
FAIL: toRoman should fail with negative input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 112, in testNegative
self.assertRaises(roman1.OutOfRangeError, roman1.toRoman, -1)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError
==
FAIL: toRoman should fail with large input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 104, in testTooLarge
self.assertRaises(roman1.OutOfRangeError, roman1.toRoman, 4000)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError
==
FAIL: toRoman should fail with 0 input 1

–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 108, in testZero
self.assertRaises(roman1.OutOfRangeError, roman1.toRoman, 0)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError 2

–––––––––––––––––––––––––––––––––––
Ran 12 tests in 0.040s 3

FAILED (failures=10, errors=2) 4

1 Running the script runs unittest.main(), which runs each test case, which is to say
each method defined in each class within romantest.py. For each test case, it prints out
the doc string of the method and whether that test passed or failed. As expected, none
of the test cases passed.

2 For each failed test case, unittest displays the trace information showing exactly what
happened. In this case, the call to assertRaises (also called failUnlessRaises) raised
an AssertionError because it was expecting toRoman to raise an OutOfRangeError and it
didn’t.

268

3 After the detail, unittest displays a summary of how many tests were performed and
how long it took.

4 Overall, the unit test failed because at least one test case did not pass. When a test case
doesn’t pass, unittest distinguishes between failures and errors. A failure is a call to an
assertXYZ method, like assertEqual or assertRaises, that fails because the asserted
condition is not true or the expected exception was not raised. An error is any other sort
of exception raised in the code you’re testing or the unit test case itself. For instance, the
testFromRomanCase method (“fromRoman should only accept uppercase input”) was an
error, because the call to numeral.upper() raised an AttributeError exception, because
toRoman was supposed to return a string but didn’t. But testZero (“toRoman should fail
with 0 input”) was a failure, because the call to fromRoman did not raise the InvalidRoman-
Numeral exception that assertRaises was looking for.

14.2 roman.py, stage 2

Now that you have the framework of the roman module laid out, it’s time to start
writing code and passing test cases.

Example 14.3. roman2.py

This file is available in py/roman/stage2/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = ((’M’, 1000), 1

(’CM’, 900),
(’D’, 500),
(’CD’, 400),
(’C’, 100),
(’XC’, 90),
(’L’, 50),
(’XL’, 40),
(’X’, 10),
(’IX’, 9),
(’V’, 5),

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

269

(’IV’, 4),
(’I’, 1))

def toRoman(n):
"""convert integer to Roman numeral"""
result = ""
for numeral, integer in romanNumeralMap:

while n >= integer: 2

result += numeral
n -= integer

return result

def fromRoman(s):
"""convert Roman numeral to integer"""
pass

1 romanNumeralMap is a tuple of tuples which defines three things:

1. The character representations of the most basic Roman numerals. Note that this is not
just the single-character Roman numerals; you’re also defining two-character pairs like
CM (“one hundred less than one thousand”); this will make the toRoman code simpler
later.

2. The order of the Roman numerals. They are listed in descending value order, from M all
the way down to I.

3. The value of each Roman numeral. Each inner tuple is a pair of (numeral, value).

2 Here’s where your rich data structure pays off, because you don’t need any special logic
to handle the subtraction rule. To convert to Roman numerals, you simply iterate through
romanNumeralMap looking for the largest integer value less than or equal to the input.
Once found, you add the Roman numeral representation to the end of the output, subtract
the corresponding integer value from the input, lather, rinse, repeat.

Example 14.4. How toRoman works

If you’re not clear how toRoman works, add a print statement to the end of the while loop:

while n >= integer:
result += numeral
n -= integer
print ’subtracting’, integer, ’from input, adding’, numeral, ’to output’

>>> import roman2
>>> roman2.toRoman(1424)
subtracting 1000 from input, adding M to output
subtracting 400 from input, adding CD to output

270

subtracting 10 from input, adding X to output
subtracting 10 from input, adding X to output
subtracting 4 from input, adding IV to output
’MCDXXIV’

So toRoman appears to work, at least in this manual spot check. But will it pass the unit testing?
Well no, not entirely.

Example 14.5. Output of romantest2.py against roman2.py

Remember to run romantest2.py with the -v command-line flag to enable verbose mode.

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok 1

fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... ok 2

fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non-integer input ... FAIL 3

toRoman should fail with negative input ... FAIL
toRoman should fail with large input ... FAIL
toRoman should fail with 0 input ... FAIL

1 toRoman does, in fact, always return uppercase, because romanNumeralMap defines the
Roman numeral representations as uppercase. So this test passes already.

2 Here’s the big news: this version of the toRoman function passes the known values test.
Remember, it’s not comprehensive, but it does put the function through its paces with a va-
riety of good inputs, including inputs that produce every single-character Roman numeral,
the largest possible input (3999), and the input that produces the longest possible Roman
numeral (3888). At this point, you can be reasonably confident that the function works for
any good input value you could throw at it.

3 However, the function does not “work” for bad values; it fails every single bad input
test. That makes sense, because you didn’t include any checks for bad input. Those test
cases look for specific exceptions to be raised (via assertRaises), and you’re never raising
them. You’ll do that in the next stage.

Here’s the rest of the output of the unit test, listing the details of all the failures. You’re down
to 10.

==
FAIL: fromRoman should only accept uppercase input
--

271

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 156, in testFromRomanCase

roman2.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises

raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with malformed antecedents
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 133, in testMalformedAntecedent
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 127, in testRepeatedPairs
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should give known result with known input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 99, in testFromRomanKnownValues
self.assertEqual(integer, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or ’%s != %s’ % (first, second))

AssertionError: 1 != None
==
FAIL: fromRoman(toRoman(n))==n for all n
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 141, in testSanity
self.assertEqual(integer, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual

272

raise self.failureException, (msg or ’%s != %s’ % (first, second))
AssertionError: 1 != None
==
FAIL: toRoman should fail with non-integer input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 116, in testNonInteger
self.assertRaises(roman2.NotIntegerError, roman2.toRoman, 0.5)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: NotIntegerError
==
FAIL: toRoman should fail with negative input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 112, in testNegative
self.assertRaises(roman2.OutOfRangeError, roman2.toRoman, -1)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError
==
FAIL: toRoman should fail with large input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 104, in testTooLarge
self.assertRaises(roman2.OutOfRangeError, roman2.toRoman, 4000)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError
==
FAIL: toRoman should fail with 0 input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 108, in testZero
self.assertRaises(roman2.OutOfRangeError, roman2.toRoman, 0)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError
--
Ran 12 tests in 0.320s

FAILED (failures=10)

14.3 roman.py, stage 3

Now that toRoman behaves correctly with good input (integers from 1 to 3999),
it’s time to make it behave correctly with bad input (everything else).

273

Example 14.6. roman3.py

This file is available in py/roman/stage3/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = ((’M’, 1000),

(’CM’, 900),
(’D’, 500),
(’CD’, 400),
(’C’, 100),
(’XC’, 90),
(’L’, 50),
(’XL’, 40),
(’X’, 10),
(’IX’, 9),
(’V’, 5),
(’IV’, 4),
(’I’, 1))

def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n < 4000): 1

raise OutOfRangeError, "number out of range (must be 1..3999)" 2

if int(n) <> n: 3

raise NotIntegerError, "non-integers can not be converted"

result = "" 4

for numeral, integer in romanNumeralMap:
while n >= integer:

result += numeral
n -= integer

return result

def fromRoman(s):
"""convert Roman numeral to integer"""
pass

1 This is a nice Pythonic shortcut: multiple comparisons at once. This is equivalent to if
not ((0 < n) and (n < 4000)), but it’s much easier to read. This is the range check,
and it should catch inputs that are too large, negative, or zero.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

274

2 You raise exceptions yourself with the raise statement. You can raise any of the built-
in exceptions, or you can raise any of your custom exceptions that you’ve defined. The
second parameter, the error message, is optional; if given, it is displayed in the traceback
that is printed if the exception is never handled.

3 This is the non-integer check. Non-integers can not be converted to Roman numerals.

4 The rest of the function is unchanged.

Example 14.7. Watching toRoman handle bad input

>>> import roman3
>>> roman3.toRoman(4000)
Traceback (most recent call last):

File "<interactive input>", line 1, in ?
File "roman3.py", line 27, in toRoman

raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)
>>> roman3.toRoman(1.5)
Traceback (most recent call last):

File "<interactive input>", line 1, in ?
File "roman3.py", line 29, in toRoman

raise NotIntegerError, "non-integers can not be converted"
NotIntegerError: non-integers can not be converted

Example 14.8. Output of romantest3.py against roman3.py

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... ok 1

fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non-integer input ... ok 2

toRoman should fail with negative input ... ok 3

toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

1 toRoman still passes the known values test, which is comforting. All the tests that passed
in stage 2 still pass, so the latest code hasn’t broken anything.

2 More exciting is the fact that all of the bad input tests now pass. This test, testNonInte-
ger, passes because of the int(n) <> n check. When a non-integer is passed to toRoman,

275

the int(n) <> n check notices it and raises the NotIntegerError exception, which is what
testNonInteger is looking for.

3 This test, testNegative, passes because of the not (0 < n < 4000) check, which raises
an OutOfRangeError exception, which is what testNegative is looking for.

==
FAIL: fromRoman should only accept uppercase input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 156, in testFromRomanCase
roman3.fromRoman, numeral.lower())

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with malformed antecedents
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 133, in testMalformedAntecedent
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 127, in testRepeatedPairs
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should give known result with known input
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 99, in testFromRomanKnownValues
self.assertEqual(integer, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual

276

raise self.failureException, (msg or ’%s != %s’ % (first, second))
AssertionError: 1 != None
==
FAIL: fromRoman(toRoman(n))==n for all n
–––––––––––––––––––––––––––––––––––
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 141, in testSanity
self.assertEqual(integer, result)

File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or ’%s != %s’ % (first, second))

AssertionError: 1 != None
–––––––––––––––––––––––––––––––––––
Ran 12 tests in 0.401s

FAILED (failures=6) 1

1 You’re down to 6 failures, and all of them involve fromRoman: the known values test,
the three separate bad input tests, the case check, and the sanity check. That means that
toRoman has passed all the tests it can pass by itself. (It’s involved in the sanity check, but
that also requires that fromRoman be written, which it isn’t yet.) Which means that you
must stop coding toRoman now. No tweaking, no twiddling, no extra checks “just in case”.
Stop. Now. Back away from the keyboard.

Know when to stop coding
The most important thing that comprehensive unit testing can tell you is when to stop coding.
When all the unit tests for a function pass, stop coding the function. When all the unit tests for
an entire module pass, stop coding the module.

14.4 roman.py, stage 4

Now that toRoman is done, it’s time to start coding fromRoman. Thanks to the
rich data structure that maps individual Roman numerals to integer values, this
is no more difficult than the toRoman function.

Example 14.9. roman4.py

This file is available in py/roman/stage4/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

277

class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = ((’M’, 1000),

(’CM’, 900),
(’D’, 500),
(’CD’, 400),
(’C’, 100),
(’XC’, 90),
(’L’, 50),
(’XL’, 40),
(’X’, 10),
(’IX’, 9),
(’V’, 5),
(’IV’, 4),
(’I’, 1))

toRoman function omitted for clarity (it hasn’t changed)

def fromRoman(s):
"""convert Roman numeral to integer"""
result = 0
index = 0
for numeral, integer in romanNumeralMap:

while s[index:index+len(numeral)] == numeral: 1

result += integer
index += len(numeral)

return result

1 The pattern here is the same as toRoman. You iterate through your Roman numeral data
structure (a tuple of tuples), and instead of matching the highest integer values as often as
possible, you match the “highest” Roman numeral character strings as often as possible.

Example 14.10. How fromRoman works

If you’re not clear how fromRoman works, add a print statement to the end of the while loop:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
print ’found’, numeral, ’of length’, len(numeral), ’, adding’, integer

>>> import roman4
>>> roman4.fromRoman(’MCMLXXII’)
found M , of length 1, adding 1000
found CM , of length 2, adding 900
found L , of length 1, adding 50
found X , of length 1, adding 10

278

found X , of length 1, adding 10
found I , of length 1, adding 1
found I , of length 1, adding 1
1972

Example 14.11. Output of romantest4.py against roman4.py

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... ok 1

toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok 2

toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

1 Two pieces of exciting news here. The first is that fromRoman works for good input, at
least for all the known values you test.

2 The second is that the sanity check also passed. Combined with the known values tests,
you can be reasonably sure that both toRoman and fromRoman work properly for all possi-
ble good values. (This is not guaranteed; it is theoretically possible that toRoman has a bug
that produces the wrong Roman numeral for some particular set of inputs, and that from-
Roman has a reciprocal bug that produces the same wrong integer values for exactly that
set of Roman numerals that toRoman generated incorrectly. Depending on your application
and your requirements, this possibility may bother you; if so, write more comprehensive
test cases until it doesn’t bother you.)

==
FAIL: fromRoman should only accept uppercase input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 156, in testFromRomanCase
roman4.fromRoman, numeral.lower())

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with malformed antecedents
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 133, in testMalformedAntecedent
self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)

279

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 127, in testRepeatedPairs
self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
--
Ran 12 tests in 1.222s

FAILED (failures=4)

14.5 roman.py, stage 5

Now that fromRoman works properly with good input, it’s time to fit in the last
piece of the puzzle: making it work properly with bad input. That means finding
a way to look at a string and determine if it’s a valid Roman numeral. This is
inherently more difficult than validating numeric input in toRoman, but you
have a powerful tool at your disposal: regular expressions.

If you’re not familiar with regular expressions and didn’t read Chapter 7, now would be a
good time.

As you saw in Section 7.3, there are several simple rules for constructing a Roman numeral,
using the letters M, D, C, L, X, V, and I. Let’s review the rules:

1. Characters are additive. I is 1, II is 2, and III is 3. VI is 6 (literally, “5 and 1”), VII is 7,
and VIII is 8.

2. The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to
subtract from the next highest fives character. You can’t represent 4 as IIII; instead, it is

280

represented as IV (“1 less than 5”). 40 is written as XL (“10 less than 50”), 41 as XLI, 42 as
XLII, 43 as XLIII, and then 44 as XLIV (“10 less than 50, then 1 less than 5”).

3. Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is
IX (“1 less than 10”), not VIIII (since the I character can not be repeated four times). 90
is XC, 900 is CM.

4. The fives characters can not be repeated. 10 is always represented as X, never as VV. 100 is
always C, never LL.

5. Roman numerals are always written highest to lowest, and read left to right, so order of
characters matters very much. DC is 600; CD is a completely different number (400, “100
less than 500”). CI is 101; IC is not even a valid Roman numeral (because you can’t subtract
1 directly from 100; you would need to write it as XCIX, “10 less than 100, then 1 less than
10”).

Example 14.12. roman5.py

This file is available in py/roman/stage5/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

"""Convert to and from Roman numerals"""
import re

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = ((’M’, 1000),

(’CM’, 900),
(’D’, 500),
(’CD’, 400),
(’C’, 100),
(’XC’, 90),
(’L’, 50),
(’XL’, 40),
(’X’, 10),
(’IX’, 9),
(’V’, 5),
(’IV’, 4),
(’I’, 1))

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

281

def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n < 4000):

raise OutOfRangeError, "number out of range (must be 1..3999)"
if int(n) <> n:

raise NotIntegerError, "non-integers can not be converted"

result = ""
for numeral, integer in romanNumeralMap:

while n >= integer:
result += numeral
n -= integer

return result

#Define pattern to detect valid Roman numerals
romanNumeralPattern = ’^M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$’ 1

def fromRoman(s):
"""convert Roman numeral to integer"""
if not re.search(romanNumeralPattern, s): 2

raise InvalidRomanNumeralError, ’Invalid Roman numeral: %s’ % s

result = 0
index = 0
for numeral, integer in romanNumeralMap:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)

return result

1 This is just a continuation of the pattern you discussed in Section 7.3. The tens places is
either XC (90), XL (40), or an optional L followed by 0 to 3 optional X characters. The ones
place is either IX (9), IV (4), or an optional V followed by 0 to 3 optional I characters.

2 Having encoded all that logic into a regular expression, the code to check for invalid Ro-
man numerals becomes trivial. If re.search returns an object, then the regular expression
matched and the input is valid; otherwise, the input is invalid.

At this point, you are allowed to be skeptical that that big ugly regular expression could pos-
sibly catch all the types of invalid Roman numerals. But don’t take my word for it, look at the
results:

Example 14.13. Output of romantest5.py against roman5.py

fromRoman should only accept uppercase input ... ok 1

toRoman should always return uppercase ... ok
fromRoman should fail with malformed antecedents ... ok 2

282

fromRoman should fail with repeated pairs of numerals ... ok 3

fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

–––––––––––––––––––––––––––––––––––
Ran 12 tests in 2.864s

OK 4

1 One thing I didn’t mention about regular expressions is that, by default, they are case-
sensitive. Since the regular expression romanNumeralPattern was expressed in uppercase
characters, the re.search check will reject any input that isn’t completely uppercase. So
the uppercase input test passes.

2 More importantly, the bad input tests pass. For instance, the malformed antecedents test
checks cases like MCMC. As you’ve seen, this does not match the regular expression, so from-
Roman raises an InvalidRomanNumeralError exception, which is what the malformed an-
tecedents test case is looking for, so the test passes.

3 In fact, all the bad input tests pass. This regular expression catches everything you could
think of when you made your test cases.

4 And the anticlimax award of the year goes to the word “OK”, which is printed by the
unittest module when all the tests pass.

What to do when all of your tests pass
When all of your tests pass, stop coding.

283

15 Refactoring

15.1 Handling bugs

Despite your best efforts to write comprehensive unit tests, bugs happen. What
do I mean by “bug”? A bug is a test case you haven’t written yet.

Example 15.1. The bug

> import roman5
> roman5.fromRoman("") 1

0

1 Remember in the previous section when you kept seeing that an empty string would
match the regular expression you were using to check for valid Roman numerals? Well, it
turns out that this is still true for the final version of the regular expression. And that’s a
bug; you want an empty string to raise an InvalidRomanNumeralError exception just like
any other sequence of characters that don’t represent a valid Roman numeral.

After reproducing the bug, and before fixing it, you should write a test case that fails, thus
illustrating the bug.

Example 15.2. Testing for the bug (romantest61.py)

class FromRomanBadInput(unittest.TestCase):

previous test cases omitted for clarity (they haven’t changed)

def testBlank(self):
"""fromRoman should fail with blank string"""
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, "") 1

1 Pretty simple stuff here. Call fromRoman with an empty string and make sure it raises an
InvalidRomanNumeralError exception. The hard part was finding the bug; now that you
know about it, testing for it is the easy part.

Since your code has a bug, and you now have a test case that tests this bug, the test case will
fail:

Example 15.3. Output of romantest61.py against roman61.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok

284

fromRoman should fail with blank string ... FAIL
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

==
FAIL: fromRoman should fail with blank string
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage6\romantest61.py", line 137, in testBlank
self.assertRaises(roman61.InvalidRomanNumeralError, roman61.fromRoman, "")

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: InvalidRomanNumeralError
--
Ran 13 tests in 2.864s

FAILED (failures=1)

Now you can fix the bug.

Example 15.4. Fixing the bug (roman62.py)

This file is available in py/roman/stage6/ in the examples directory.

def fromRoman(s):
"""convert Roman numeral to integer"""
if not s: 1

raise InvalidRomanNumeralError, ’Input can not be blank’
if not re.search(romanNumeralPattern, s):

raise InvalidRomanNumeralError, ’Invalid Roman numeral: %s’ % s

result = 0
index = 0
for numeral, integer in romanNumeralMap:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)

return result

1 Only two lines of code are required: an explicit check for an empty string, and a raise
statement.

285

Example 15.5. Output of romantest62.py against roman62.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok
fromRoman should fail with blank string ... ok 1

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

–––––––––––––––––––––––––––––––––––
Ran 13 tests in 2.834s

OK 2

1 The blank string test case now passes, so the bug is fixed.

2 All the other test cases still pass, which means that this bug fix didn’t break anything else.
Stop coding.

Coding this way does not make fixing bugs any easier. Simple bugs (like this one) require sim-
ple test cases; complex bugs will require complex test cases. In a testing-centric environment,
it may seem like it takes longer to fix a bug, since you need to articulate in code exactly what
the bug is (to write the test case), then fix the bug itself. Then if the test case doesn’t pass right
away, you need to figure out whether the fix was wrong, or whether the test case itself has
a bug in it. However, in the long run, this back-and-forth between test code and code tested
pays for itself, because it makes it more likely that bugs are fixed correctly the first time. Also,
since you can easily re-run all the test cases along with your new one, you are much less likely
to break old code when fixing new code. Today’s unit test is tomorrow’s regression test.

15.2 Handling changing requirements

Despite your best efforts to pin your customers to the ground and extract exact
requirements from them on pain of horrible nasty things involving scissors and
hot wax, requirements will change. Most customers don’t know what they want
until they see it, and even if they do, they aren’t that good at articulating what
they want precisely enough to be useful. And even if they do, they’ll want more

286

in the next release anyway. So be prepared to update your test cases as require-
ments change.

Suppose, for instance, that you wanted to expand the range of the Roman numeral conversion
functions. Remember the rule that said that no character could be repeated more than three
times? Well, the Romans were willing to make an exception to that rule by having 4 M charac-
ters in a row to represent 4000. If you make this change, you’ll be able to expand the range of
convertible numbers from 1..3999 to 1..4999. But first, you need to make some changes to
the test cases.

Example 15.6. Modifying test cases for new requirements (romantest71.py)

This file is available in py/roman/stage7/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

import roman71
import unittest

class KnownValues(unittest.TestCase):
knownValues = ((1, ’I’),

(2, ’II’),
(3, ’III’),
(4, ’IV’),
(5, ’V’),
(6, ’VI’),
(7, ’VII’),
(8, ’VIII’),
(9, ’IX’),
(10, ’X’),
(50, ’L’),
(100, ’C’),
(500, ’D’),
(1000, ’M’),
(31, ’XXXI’),
(148, ’CXLVIII’),
(294, ’CCXCIV’),
(312, ’CCCXII’),
(421, ’CDXXI’),
(528, ’DXXVIII’),
(621, ’DCXXI’),
(782, ’DCCLXXXII’),
(870, ’DCCCLXX’),
(941, ’CMXLI’),
(1043, ’MXLIII’),
(1110, ’MCX’),
(1226, ’MCCXXVI’),
(1301, ’MCCCI’),

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

287

(1485, ’MCDLXXXV’),
(1509, ’MDIX’),
(1607, ’MDCVII’),
(1754, ’MDCCLIV’),
(1832, ’MDCCCXXXII’),
(1993, ’MCMXCIII’),
(2074, ’MMLXXIV’),
(2152, ’MMCLII’),
(2212, ’MMCCXII’),
(2343, ’MMCCCXLIII’),
(2499, ’MMCDXCIX’),
(2574, ’MMDLXXIV’),
(2646, ’MMDCXLVI’),
(2723, ’MMDCCXXIII’),
(2892, ’MMDCCCXCII’),
(2975, ’MMCMLXXV’),
(3051, ’MMMLI’),
(3185, ’MMMCLXXXV’),
(3250, ’MMMCCL’),
(3313, ’MMMCCCXIII’),
(3408, ’MMMCDVIII’),
(3501, ’MMMDI’),
(3610, ’MMMDCX’),
(3743, ’MMMDCCXLIII’),
(3844, ’MMMDCCCXLIV’),
(3888, ’MMMDCCCLXXXVIII’),
(3940, ’MMMCMXL’),
(3999, ’MMMCMXCIX’),
(4000, ’MMMM’), 1

(4500, ’MMMMD’),
(4888, ’MMMMDCCCLXXXVIII’),
(4999, ’MMMMCMXCIX’))

def testToRomanKnownValues(self):
"""toRoman should give known result with known input"""
for integer, numeral in self.knownValues:

result = roman71.toRoman(integer)
self.assertEqual(numeral, result)

def testFromRomanKnownValues(self):
"""fromRoman should give known result with known input"""
for integer, numeral in self.knownValues:

result = roman71.fromRoman(numeral)
self.assertEqual(integer, result)

class ToRomanBadInput(unittest.TestCase):
def testTooLarge(self):

"""toRoman should fail with large input"""
self.assertRaises(roman71.OutOfRangeError, roman71.toRoman, 5000) 2

288

def testZero(self):
"""toRoman should fail with 0 input"""
self.assertRaises(roman71.OutOfRangeError, roman71.toRoman, 0)

def testNegative(self):
"""toRoman should fail with negative input"""
self.assertRaises(roman71.OutOfRangeError, roman71.toRoman, -1)

def testNonInteger(self):
"""toRoman should fail with non-integer input"""
self.assertRaises(roman71.NotIntegerError, roman71.toRoman, 0.5)

class FromRomanBadInput(unittest.TestCase):
def testTooManyRepeatedNumerals(self):

"""fromRoman should fail with too many repeated numerals"""
for s in (’MMMMM’, ’DD’, ’CCCC’, ’LL’, ’XXXX’, ’VV’, ’IIII’): 3

self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

def testRepeatedPairs(self):
"""fromRoman should fail with repeated pairs of numerals"""
for s in (’CMCM’, ’CDCD’, ’XCXC’, ’XLXL’, ’IXIX’, ’IVIV’):

self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents"""
for s in (’IIMXCC’, ’VX’, ’DCM’, ’CMM’, ’IXIV’,

’MCMC’, ’XCX’, ’IVI’, ’LM’, ’LD’, ’LC’):
self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

def testBlank(self):
"""fromRoman should fail with blank string"""
self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, "")

class SanityCheck(unittest.TestCase):
def testSanity(self):

"""fromRoman(toRoman(n))==n for all n"""
for integer in range(1, 5000): 4

numeral = roman71.toRoman(integer)
result = roman71.fromRoman(numeral)
self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):

"""toRoman should always return uppercase"""
for integer in range(1, 5000):

numeral = roman71.toRoman(integer)
self.assertEqual(numeral, numeral.upper())

289

def testFromRomanCase(self):
"""fromRoman should only accept uppercase input"""
for integer in range(1, 5000):

numeral = roman71.toRoman(integer)
roman71.fromRoman(numeral.upper())
self.assertRaises(roman71.InvalidRomanNumeralError,

roman71.fromRoman, numeral.lower())

if __name__ == "__main__":
unittest.main()

1 The existing known values don’t change (they’re all still reasonable values to test), but you
need to add a few more in the 4000 range. Here I’ve included 4000 (the shortest), 4500
(the second shortest), 4888 (the longest), and 4999 (the largest).

2 The definition of “large input” has changed. This test used to call toRoman with 4000 and
expect an error; now that 4000-4999 are good values, you need to bump this up to 5000.

3 The definition of “too many repeated numerals” has also changed. This test used to call
fromRoman with ’MMMM’ and expect an error; now that MMMM is considered a valid Roman
numeral, you need to bump this up to ’MMMMM’.

4 The sanity check and case checks loop through every number in the range, from 1 to 3999.
Since the range has now expanded, these for loops need to be updated as well to go up to
4999.

Now your test cases are up to date with the new requirements, but your code is not, so you
expect several of the test cases to fail.

Example 15.7. Output of romantest71.py against roman71.py

fromRoman should only accept uppercase input ... ERROR 1

toRoman should always return uppercase ... ERROR
fromRoman should fail with blank string ... ok
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ERROR 2

toRoman should give known result with known input ... ERROR 3

fromRoman(toRoman(n))==n for all n ... ERROR 4

toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

290

1 Our case checks now fail because they loop from 1 to 4999, but toRoman only accepts
numbers from 1 to 3999, so it will fail as soon the test case hits 4000.

2 The fromRoman known values test will fail as soon as it hits ’MMMM’, because fromRoman
still thinks this is an invalid Roman numeral.

3 The toRoman known values test will fail as soon as it hits 4000, because toRoman still
thinks this is out of range.

4 The sanity check will also fail as soon as it hits 4000, because toRoman still thinks this is
out of range.

==
ERROR: fromRoman should only accept uppercase input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 161, in testFromRomanCase
numeral = roman71.toRoman(integer)

File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"

OutOfRangeError: number out of range (must be 1..3999)
==
ERROR: toRoman should always return uppercase
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 155, in testToRomanCase
numeral = roman71.toRoman(integer)

File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"

OutOfRangeError: number out of range (must be 1..3999)
==
ERROR: fromRoman should give known result with known input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 102, in testFromRomanKnownValues
result = roman71.fromRoman(numeral)

File "roman71.py", line 47, in fromRoman
raise InvalidRomanNumeralError, ’Invalid Roman numeral: %s’ % s

InvalidRomanNumeralError: Invalid Roman numeral: MMMM
==
ERROR: toRoman should give known result with known input
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 96, in testToRomanKnownValues
result = roman71.toRoman(integer)

File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"

OutOfRangeError: number out of range (must be 1..3999)

291

==
ERROR: fromRoman(toRoman(n))==n for all n
--
Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 147, in testSanity
numeral = roman71.toRoman(integer)

File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"

OutOfRangeError: number out of range (must be 1..3999)
--
Ran 13 tests in 2.213s

FAILED (errors=5)

Now that you have test cases that fail due to the new requirements, you can think about fixing
the code to bring it in line with the test cases. (One thing that takes some getting used to when
you first start coding unit tests is that the code being tested is never “ahead” of the test cases.
While it’s behind, you still have some work to do, and as soon as it catches up to the test cases,
you stop coding.)

Example 15.8. Coding the new requirements (roman72.py)

This file is available in py/roman/stage7/ in the examples directory.

"""Convert to and from Roman numerals"""
import re

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = ((’M’, 1000),

(’CM’, 900),
(’D’, 500),
(’CD’, 400),
(’C’, 100),
(’XC’, 90),
(’L’, 50),
(’XL’, 40),
(’X’, 10),
(’IX’, 9),
(’V’, 5),
(’IV’, 4),
(’I’, 1))

292

def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n < 5000): 1

raise OutOfRangeError, "number out of range (must be 1..4999)"
if int(n) <> n:

raise NotIntegerError, "non-integers can not be converted"

result = ""
for numeral, integer in romanNumeralMap:

while n >= integer:
result += numeral
n -= integer

return result

#Define pattern to detect valid Roman numerals
romanNumeralPattern = ’^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$’ 2

def fromRoman(s):
"""convert Roman numeral to integer"""
if not s:

raise InvalidRomanNumeralError, ’Input can not be blank’
if not re.search(romanNumeralPattern, s):

raise InvalidRomanNumeralError, ’Invalid Roman numeral: %s’ % s

result = 0
index = 0
for numeral, integer in romanNumeralMap:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)

return result

1 toRoman only needs one small change, in the range check. Where you used to check 0
< n < 4000, you now check 0 < n < 5000. And you change the error message that you
raise to reflect the new acceptable range (1..4999 instead of 1..3999). You don’t need
to make any changes to the rest of the function; it handles the new cases already. (It merrily
adds ’M’ for each thousand that it finds; given 4000, it will spit out ’MMMM’. The only
reason it didn’t do this before is that you explicitly stopped it with the range check.)

2 You don’t need to make any changes to fromRoman at all. The only change is to roman-
NumeralPattern; if you look closely, you’ll notice that you added another optional M in
the first section of the regular expression. This will allow up to 4 M characters instead of
3, meaning you will allow the Roman numeral equivalents of 4999 instead of 3999. The
actual fromRoman function is completely general; it just looks for repeated Roman numeral
characters and adds them up, without caring how many times they repeat. The only reason
it didn’t handle ’MMMM’ before is that you explicitly stopped it with the regular expression
pattern matching.

293

You may be skeptical that these two small changes are all that you need. Hey, don’t take my
word for it; see for yourself:

Example 15.9. Output of romantest72.py against roman72.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok
fromRoman should fail with blank string ... ok
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

–––––––––––––––––––––––––––––––––––
Ran 13 tests in 3.685s

OK 1

1 All the test cases pass. Stop coding.

Comprehensive unit testing means never having to rely on a programmer who says “Trust
me.”

15.3 Refactoring

The best thing about comprehensive unit testing is not the feeling you get when
all your test cases finally pass, or even the feeling you get when someone else
blames you for breaking their code and you can actually prove that you didn’t.
The best thing about unit testing is that it gives you the freedom to refactor mer-
cilessly.

Refactoring is the process of taking working code and making it work better. Usually, “bet-
ter” means “faster”, although it can also mean “using less memory”, or “using less disk space”,
or simply “more elegantly”. Whatever it means to you, to your project, in your environment,
refactoring is important to the long-term health of any program.

Here, “better” means “faster”. Specifically, the fromRoman function is slower than it needs to
be, because of that big nasty regular expression that you use to validate Roman numerals. It’s

294

probably not worth trying to do away with the regular expression altogether (it would be dif-
ficult, and it might not end up any faster), but you can speed up the function by precompiling
the regular expression.

Example 15.10. Compiling regular expressions

> import re
> pattern = ’^M?M?M?$’
> re.search(pattern, ’M’) 1

<SRE_Match object at 01090490>
> compiledPattern = re.compile(pattern) 2

> compiledPattern
<SRE_Pattern object at 00F06E28>
> dir(compiledPattern) 3

[’findall’, ’match’, ’scanner’, ’search’, ’split’, ’sub’, ’subn’]
> compiledPattern.search(’M’) 4

<SRE_Match object at 01104928>

1 This is the syntax you’ve seen before: re.search takes a regular expression as a string
(pattern) and a string to match against it (’M’). If the pattern matches, the function returns
a match object which can be queried to find out exactly what matched and how.

2 This is the new syntax: re.compile takes a regular expression as a string and returns a
pattern object. Note there is no string to match here. Compiling a regular expression has
nothing to do with matching it against any specific strings (like ’M’); it only involves the
regular expression itself.

3 The compiled pattern object returned from re.compile has several useful-looking func-
tions, including several (like search and sub) that are available directly in the re module.

4 Calling the compiled pattern object’s search function with the string ’M’ accomplishes
the same thing as calling re.search with both the regular expression and the string ’M’.
Only much, much faster. (In fact, the re.search function simply compiles the regular
expression and calls the resulting pattern object’s search method for you.)

Compiling regular expressions
Whenever you are going to use a regular expression more than once, you should compile it to
get a pattern object, then call the methods on the pattern object directly.

Example 15.11. Compiled regular expressions in roman81.py

This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

295

toRoman and rest of module omitted for clarity

romanNumeralPattern = \
re.compile(’^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$’) 1

def fromRoman(s):
"""convert Roman numeral to integer"""
if not s:

raise InvalidRomanNumeralError, ’Input can not be blank’
if not romanNumeralPattern.search(s): 2

raise InvalidRomanNumeralError, ’Invalid Roman numeral: %s’ % s

result = 0
index = 0
for numeral, integer in romanNumeralMap:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)

return result

1 This looks very similar, but in fact a lot has changed. romanNumeralPattern is no longer
a string; it is a pattern object which was returned from re.compile.

2 That means that you can call methods on romanNumeralPattern directly. This will be
much, much faster than calling re.search every time. The regular expression is compiled
once and stored in romanNumeralPattern when the module is first imported; then, every
time you call fromRoman, you can immediately match the input string against the regular
expression, without any intermediate steps occurring under the covers.

So how much faster is it to compile regular expressions? See for yourself:

Example 15.12. Output of romantest81.py against roman81.py

............. 1

–––––––––––––––––––––––––––––––––––
Ran 13 tests in 3.385s 2

OK 3

1 Just a note in passing here: this time, I ran the unit test without the -v option, so instead
of the full doc string for each test, you only get a dot for each test that passes. (If a
test failed, you’d get an F, and if it had an error, you’d get an E. You’d still get complete
tracebacks for each failure and error, so you could track down any problems.)

2 You ran 13 tests in 3.385 seconds, compared to 3.685 seconds without precompiling the
regular expressions. That’s an 8% improvement overall, and remember that most of the time

296

spent during the unit test is spent doing other things. (Separately, I time-tested the regular
expressions by themselves, apart from the rest of the unit tests, and found that compiling
this regular expression speeds up the search by an average of 54%.) Not bad for such a
simple fix.

3 Oh, and in case you were wondering, precompiling the regular expression didn’t break
anything, and you just proved it.

There is one other performance optimization that I want to try. Given the complexity of regular
expression syntax, it should come as no surprise that there is frequently more than one way
to write the same expression. After some discussion about this module on comp.lang.python,
someone suggested that I try using the {m,n} syntax for the optional repeated characters.

Example 15.13. roman82.py

This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

rest of program omitted for clarity

#old version
#romanNumeralPattern = \
re.compile(’^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$’)

#new version
romanNumeralPattern = \

re.compile(’^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$’) 1

1 You have replaced M?M?M?M? with M{0,4}. Both mean the same thing: “match 0 to 4 M
characters”. Similarly, C?C?C? became C{0,3} (“match 0 to 3 C characters”) and so forth
for X and I.

This form of the regular expression is a little shorter (though not any more readable). The big
question is, is it any faster?

Example 15.14. Output of romantest82.py against roman82.py

.............
–––––––––––––––––––––––––––––––––––
Ran 13 tests in 3.315s 1

OK 2

1 Overall, the unit tests run 2% faster with this form of regular expression. That doesn’t
sound exciting, but remember that the search function is a small part of the overall unit

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

297

test; most of the time is spent doing other things. (Separately, I time-tested just the reg-
ular expressions, and found that the search function is 11% faster with this syntax.) By
precompiling the regular expression and rewriting part of it to use this new syntax, you’ve
improved the regular expression performance by over 60%, and improved the overall per-
formance of the entire unit test by over 10%.

2 More important than any performance boost is the fact that the module still works per-
fectly. This is the freedom I was talking about earlier: the freedom to tweak, change, or
rewrite any piece of it and verify that you haven’t messed anything up in the process. This
is not a license to endlessly tweak your code just for the sake of tweaking it; you had a very
specific objective (“make fromRoman faster”), and you were able to accomplish that objec-
tive without any lingering doubts about whether you introduced new bugs in the process.

One other tweak I would like to make, and then I promise I’ll stop refactoring and put this
module to bed. As you’ve seen repeatedly, regular expressions can get pretty hairy and un-
readable pretty quickly. I wouldn’t like to come back to this module in six months and try to
maintain it. Sure, the test cases pass, so I know that it works, but if I can’t figure out how it
works, it’s still going to be difficult to add new features, fix new bugs, or otherwise maintain
it. As you saw in Section 7.5, Python provides a way to document your logic line-by-line.

Example 15.15. roman83.py

This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples used in this book.

rest of program omitted for clarity

#old version
#romanNumeralPattern = \
re.compile(’^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$’)

#new version
romanNumeralPattern = re.compile(’’’

^ # beginning of string
M{0,4} # thousands - 0 to 4 M’s
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C’s),

or 500-800 (D, followed by 0 to 3 C’s)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X’s),

or 50-80 (L, followed by 0 to 3 X’s)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I’s),

or 5-8 (V, followed by 0 to 3 I’s)
$ # end of string
’’’, re.VERBOSE) 1

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

298

1 The re.compile function can take an optional second argument, which is a set of one or
more flags that control various options about the compiled regular expression. Here you’re
specifying the re.VERBOSE flag, which tells Python that there are in-line comments within
the regular expression itself. The comments and all the whitespace around them are not
considered part of the regular expression; the re.compile function simply strips them all
out when it compiles the expression. This new, “verbose” version is identical to the old
version, but it is infinitely more readable.

Example 15.16. Output of romantest83.py against roman83.py

.............
–––––––––––––––––––––––––––––––––––
Ran 13 tests in 3.315s 1

OK 2

1 This new, “verbose” version runs at exactly the same speed as the old version. In fact,
the compiled pattern objects are the same, since the re.compile function strips out all the
stuff you added.

2 This new, “verbose” version passes all the same tests as the old version. Nothing has
changed, except that the programmer who comes back to this module in six months stands
a fighting chance of understanding how the function works.

15.4 Postscript

A clever reader read the previous section and took it to the next level. The
biggest headache (and performance drain) in the program as it is currently writ-
ten is the regular expression, which is required because you have no other way
of breaking down a Roman numeral. But there’s only 5000 of them; why don’t
you just build a lookup table once, then simply read that? This idea gets even
better when you realize that you don’t need to use regular expressions at all. As
you build the lookup table for converting integers to Roman numerals, you can
build the reverse lookup table to convert Roman numerals to integers.

And best of all, he already had a complete set of unit tests. He changed over half the code in
the module, but the unit tests stayed the same, so he could prove that his code worked just as
well as the original.

Example 15.17. roman9.py

This file is available in py/roman/stage9/ in the examples directory.

299

If you have not already done so, you can download this and other examples used in this book.

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Roman numerals must be less than 5000
MAX_ROMAN_NUMERAL = 4999

#Define digit mapping
romanNumeralMap = ((’M’, 1000),

(’CM’, 900),
(’D’, 500),
(’CD’, 400),
(’C’, 100),
(’XC’, 90),
(’L’, 50),
(’XL’, 40),
(’X’, 10),
(’IX’, 9),
(’V’, 5),
(’IV’, 4),
(’I’, 1))

#Create tables for fast conversion of roman numerals.
#See fillLookupTables() below.
toRomanTable = [None] # Skip an index since Roman numerals have no zero
fromRomanTable = {}

def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n <= MAX_ROMAN_NUMERAL):

raise OutOfRangeError, "number out of range (must be 1..%s)" % MAX_ROMAN_NUMERAL
if int(n) <> n:

raise NotIntegerError, "non-integers can not be converted"
return toRomanTable[n]

def fromRoman(s):
"""convert Roman numeral to integer"""
if not s:

raise InvalidRomanNumeralError, "Input can not be blank"
if not fromRomanTable.has_key(s):

raise InvalidRomanNumeralError, "Invalid Roman numeral: %s" % s
return fromRomanTable[s]

def toRomanDynamic(n):
"""convert integer to Roman numeral using dynamic programming"""

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

300

result = ""
for numeral, integer in romanNumeralMap:

if n >= integer:
result = numeral
n -= integer
break

if n > 0:
result += toRomanTable[n]

return result

def fillLookupTables():
"""compute all the possible roman numerals"""
#Save the values in two global tables to convert to and from integers.
for integer in range(1, MAX_ROMAN_NUMERAL + 1):

romanNumber = toRomanDynamic(integer)
toRomanTable.append(romanNumber)
fromRomanTable[romanNumber] = integer

fillLookupTables()

So how fast is it?

Example 15.18. Output of romantest9.py against roman9.py

.............
--
Ran 13 tests in 0.791s

OK

Remember, the best performance you ever got in the original version was 13 tests in 3.315
seconds. Of course, it’s not entirely a fair comparison, because this version will take longer to
import (when it fills the lookup tables). But since import is only done once, this is negligible in
the long run.

The moral of the story?

• Simplicity is a virtue.

• Especially when regular expressions are involved.

• And unit tests can give you the confidence to do large-scale refactoring... even if you didn’t
write the original code.

15.5 Summary
Unit testing is a powerful concept which, if properly implemented, can both re-
duce maintenance costs and increase flexibility in any long-term project. It is

301

also important to understand that unit testing is not a panacea, a Magic Problem
Solver, or a silver bullet. Writing good test cases is hard, and keeping them up
to date takes discipline (especially when customers are screaming for critical bug
fixes). Unit testing is not a replacement for other forms of testing, including func-
tional testing, integration testing, and user acceptance testing. But it is feasible,
and it does work, and once you’ve seen it work, you’ll wonder how you ever got
along without it.

This chapter covered a lot of ground, and much of it wasn’t even Python-specific. There are
unit testing frameworks for many languages, all of which require you to understand the same
basic concepts: <highlights>

• Designing test cases that are specific, automated, and independent

• Writing test cases before the code they are testing

• Writing tests that test good input and check for proper results

• Writing tests that test bad input and check for proper failures

• Writing and updating test cases to illustrate bugs or reflect new requirements

• Refactoring mercilessly to improve performance, scalability, readability, maintainability, or
whatever other -ility you’re lacking

</highlights> Additionally, you should be comfortable doing all of the following Python-
specific things: <highlights>

• Subclassing unittest.TestCase and writing methods for individual test cases

• Using assertEqual to check that a function returns a known value

• Using assertRaises to check that a function raises a known exception

• Calling unittest.main() in your if __name__ clause to run all your test cases at once

• Running unit tests in verbose or regular mode

</highlights> Further reading

• XProgramming.com has links to download unit testing frameworks for many different
languages.

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm
http://www.xprogramming.com/software.htm
http://www.xprogramming.com/software.htm
http://www.xprogramming.com/software.htm

302

16 Functional Programming

16.1 Diving in
In Chapter 13, you learned about the philosophy of unit testing. In Chapter 14,
you stepped through the implementation of basic unit tests in Python. In Chapter 15,
you saw how unit testing makes large-scale refactoring easier. This chapter will
build on those sample programs, but here we will focus more on advanced Python-
specific techniques, rather than on unit testing itself.

The following is a complete Python program that acts as a cheap and simple regression test-
ing framework. It takes unit tests that you’ve written for individual modules, collects them
all into one big test suite, and runs them all at once. I actually use this script as part of the
build process for this book; I have unit tests for several of the example programs (not just the
roman.py module featured in Chapter 13), and the first thing my automated build script does
is run this program to make sure all my examples still work. If this regression test fails, the
build immediately stops. I don’t want to release non-working examples any more than you
want to download them and sit around scratching your head and yelling at your monitor and
wondering why they don’t work.

Example 16.1. regression.py

If you have not already done so, you can download this and other examples used in this book.

"""Regression testing framework

This module will search for scripts in the same directory named
XYZtest.py. Each such script should be a test suite that tests a
module through PyUnit. (As of Python 2.1, PyUnit is included in
the standard library as "unittest".) This script will aggregate all
found test suites into one big test suite and run them all at once.
"""

import sys, os, re, unittest

def regressionTest():
path = os.path.abspath(os.path.dirname(sys.argv[0]))
files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = filter(test.search, files)
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)
modules = map(__import__, moduleNames)
load = unittest.defaultTestLoader.loadTestsFromModule
return unittest.TestSuite(map(load, modules))

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

303

if __name__ == "__main__":
unittest.main(defaultTest="regressionTest")

Running this script in the same directory as the rest of the example scripts that come with this
book will find all the unit tests, named moduletest.py, run them as a single test, and pass or
fail them all at once.

Example 16.2. Sample output of regression.py

[you@localhost py]$ python regression.py -v
help should fail with no object ... ok 1

help should return known result for apihelper ... ok
help should honor collapse argument ... ok
help should honor spacing argument ... ok
buildConnectionString should fail with list input ... ok 2

buildConnectionString should fail with string input ... ok
buildConnectionString should fail with tuple input ... ok
buildConnectionString handles empty dictionary ... ok
buildConnectionString returns known result with known input ... ok
fromRoman should only accept uppercase input ... ok 3

toRoman should always return uppercase ... ok
fromRoman should fail with blank string ... ok
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok
kgp a ref test ... ok
kgp b ref test ... ok
kgp c ref test ... ok
kgp d ref test ... ok
kgp e ref test ... ok
kgp f ref test ... ok
kgp g ref test ... ok

–––––––––––––––––––––––––––––––––––
Ran 29 tests in 2.799s

OK

1 The first 5 tests are from apihelpertest.py, which tests the example script from Chapter 4.

2 The next 5 tests are from odbchelpertest.py, which tests the example script from Chapter 2.

304

3 The rest are from romantest.py, which you studied in depth in Chapter 13.

16.2 Finding the path

When running Python scripts from the command line, it is sometimes useful to
know where the currently running script is located on disk.

This is one of those obscure little tricks that is virtually impossible to figure out on your own,
but simple to remember once you see it. The key to it is sys.argv. As you saw in Chapter 9,
this is a list that holds the list of command-line arguments. However, it also holds the name
of the running script, exactly as it was called from the command line, and this is enough infor-
mation to determine its location.

Example 16.3. fullpath.py

If you have not already done so, you can download this and other examples used in this book.

import sys, os

print ’sys.argv[0] =’, sys.argv[0] 1

pathname = os.path.dirname(sys.argv[0]) 2

print ’path =’, pathname
print ’full path =’, os.path.abspath(pathname) 3

1 Regardless of how you run a script, sys.argv[0] will always contain the name of the
script, exactly as it appears on the command line. This may or may not include any path
information, as you’ll see shortly.

2 os.path.dirname takes a filename as a string and returns the directory path portion. If
the given filename does not include any path information, os.path.dirname returns an
empty string.

3 os.path.abspath is the key here. It takes a pathname, which can be partial or even
blank, and returns a fully qualified pathname.

os.path.abspath deserves further explanation. It is very flexible; it can take any kind of
pathname.

Example 16.4. Further explanation of os.path.abspath

> import os
> os.getcwd() 1

/home/you
> os.path.abspath(’’) 2

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

305

/home/you
> os.path.abspath(’.ssh’) 3

/home/you/.ssh
> os.path.abspath(’/home/you/.ssh’) 4

/home/you/.ssh
> os.path.abspath(’.ssh/../foo/’) 5

/home/you/foo

1 os.getcwd() returns the current working directory.

2 Calling os.path.abspath with an empty string returns the current working directory,
same as os.getcwd().

3 Calling os.path.abspath with a partial pathname constructs a fully qualified pathname
out of it, based on the current working directory.

4 Calling os.path.abspath with a full pathname simply returns it.

5 os.path.abspath also normalizes the pathname it returns. Note that this example worked
even though I don’t actually have a ’foo’ directory. os.path.abspath never checks your
actual disk; this is all just string manipulation.

os.path.abspath does not validate pathnames
The pathnames and filenames you pass to os.path.abspath do not need to exist.

Normalizing pathnames
os.path.abspath not only constructs full path names, it also normalizes them. That means
that if you are in the /usr/ directory, os.path.abspath(’bin/../local/bin’) will re-
turn /usr/local/bin. It normalizes the path by making it as simple as possible. If you
just want to normalize a pathname like this without turning it into a full pathname, use
os.path.normpath instead.

Example 16.5. Sample output from fullpath.py

[you@localhost py]$ python /home/you/diveintopython/common/py/fullpath.py 1

sys.argv[0] = /home/you/diveintopython/common/py/fullpath.py
path = /home/you/diveintopython/common/py
full path = /home/you/diveintopython/common/py
[you@localhost diveintopython]$ python common/py/fullpath.py 2

sys.argv[0] = common/py/fullpath.py
path = common/py
full path = /home/you/diveintopython/common/py
[you@localhost diveintopython]$ cd common/py
[you@localhost py]$ python fullpath.py 3

sys.argv[0] = fullpath.py

306

path =
full path = /home/you/diveintopython/common/py

1 In the first case, sys.argv[0] includes the full path of the script. You can then use the
os.path.dirname function to strip off the script name and return the full directory name,
and os.path.abspath simply returns what you give it.

2 If the script is run by using a partial pathname, sys.argv[0] will still contain exactly
what appears on the command line. os.path.dirname will then give you a partial path-
name (relative to the current directory), and os.path.abspath will construct a full path-
name from the partial pathname.

3 If the script is run from the current directory without giving any path, os.path.dirname
will simply return an empty string. Given an empty string, os.path.abspath returns
the current directory, which is what you want, since the script was run from the current
directory.

os.path.abspath is cross-platform
Like the other functions in the os and os.path modules, os.path.abspath is cross-platform.
Your results will look slightly different than my examples if you’re running on Windows
(which uses backslash as a path separator) or Mac OS (which uses colons), but they’ll still
work. That’s the whole point of the os module.

Addendum One reader was dissatisfied with this solution, and wanted to be able to run all
the unit tests in the current directory, not the directory where regression.py is located. He
suggests this approach instead:

Example 16.6. Running scripts in the current directory

import sys, os, re, unittest

def regressionTest():
path = os.getcwd() 1

sys.path.append(path) 2

files = os.listdir(path) 3

1 Instead of setting path to the directory where the currently running script is located, you
set it to the current working directory instead. This will be whatever directory you were in
before you ran the script, which is not necessarily the same as the directory the script is in.
(Read that sentence a few times until you get it.)

2 Append this directory to the Python library search path, so that when you dynamically
import the unit test modules later, Python can find them. You didn’t need to do this when

307

path was the directory of the currently running script, because Python always looks in that
directory.

3 The rest of the function is the same.

This technique will allow you to re-use this regression.py script on multiple projects. Just
put the script in a common directory, then change to the project’s directory before running it.
All of that project’s unit tests will be found and tested, instead of the unit tests in the common
directory where regression.py is located.

16.3 Filtering lists revisited

You’re already familiar with using list comprehensions to filter lists. There is
another way to accomplish this same thing, which some people feel is more ex-
pressive.

Python has a built-in filter function which takes two arguments, a function and a list, and
returns a list.7 The function passed as the first argument to filter must itself take one ar-
gument, and the list that filter returns will contain all the elements from the list passed to
filter for which the function passed to filter returns true.

Got all that? It’s not as difficult as it sounds.

Example 16.7. Introducing filter

> def odd(n): 1

... return n % 2

...
> li = [1, 2, 3, 5, 9, 10, 256, -3]
> filter(odd, li) 2

[1, 3, 5, 9, -3]
> [e for e in li if odd(e)] 3

> filteredList = []
> for n in li: 4

... if odd(n):

... filteredList.append(n)

...
> filteredList
[1, 3, 5, 9, -3]

1 odd uses the built-in mod function “%” to return True if n is odd and False if n is even.

Technically, the second argument to filter can be any sequence, including lists, tuples, and custom classes that7

act like lists by defining the __getitem__ special method. If possible, filter will return the same datatype as you
give it, so filtering a list returns a list, but filtering a tuple returns a tuple.

308

2 filter takes two arguments, a function (odd) and a list (li). It loops through the list and
calls odd with each element. If odd returns a true value (remember, any non-zero value is
true in Python), then the element is included in the returned list, otherwise it is filtered out.
The result is a list of only the odd numbers from the original list, in the same order as they
appeared in the original.

3 You could accomplish the same thing using list comprehensions, as you saw in Section 4.5.

4 You could also accomplish the same thing with a for loop. Depending on your program-
ming background, this may seem more “straightforward”, but functions like filter are
much more expressive. Not only is it easier to write, it’s easier to read, too. Reading the
for loop is like standing too close to a painting; you see all the details, but it may take a
few seconds to be able to step back and see the bigger picture: “Oh, you’re just filtering the
list!”

Example 16.8. filter in regression.py

files = os.listdir(path) 1

test = re.compile("test\.py$", re.IGNORECASE) 2

files = filter(test.search, files) 3

1 As you saw in Section 16.2, path may contain the full or partial pathname of the directory
of the currently running script, or it may contain an empty string if the script is being run
from the current directory. Either way, files will end up with the names of the files in the
same directory as this script you’re running.

2 This is a compiled regular expression. As you saw in Section 15.3, if you’re going to use
the same regular expression over and over, you should compile it for faster performance.
The compiled object has a search method which takes a single argument, the string to
search. If the regular expression matches the string, the search method returns a Match ob-
ject containing information about the regular expression match; otherwise it returns None,
the Python null value.

3 For each element in the files list, you’re going to call the search method of the compiled
regular expression object, test. If the regular expression matches, the method will return
a Match object, which Python considers to be true, so the element will be included in the
list returned by filter. If the regular expression does not match, the search method will
return None, which Python considers to be false, so the element will not be included.

Historical note Versions of Python prior to 2.0 did not have list comprehensions, so you
couldn’t filter using list comprehensions; the filter function was the only game in town.
Even with the introduction of list comprehensions in 2.0, some people still prefer the old-style

309

filter (and its companion function, map, which you’ll see later in this chapter). Both tech-
niques work at the moment, so which one you use is a matter of style. There is discussion that
map and filter might be deprecated in a future version of Python, but no decision has been
made.

Example 16.9. Filtering using list comprehensions instead

files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = [f for f in files if test.search(f)] 1

1 This will accomplish exactly the same result as using the filter function. Which way is
more expressive? That’s up to you.

16.4 Mapping lists revisited

You’re already familiar with using list comprehensions to map one list into an-
other. There is another way to accomplish the same thing, using the built-in map
function. It works much the same way as the filter function.

Example 16.10. Introducing map

> def double(n):
... return n*2
...
> li = [1, 2, 3, 5, 9, 10, 256, -3]
> map(double, li) 1

[2, 4, 6, 10, 18, 20, 512, -6]
> [double(n) for n in li] 2

[2, 4, 6, 10, 18, 20, 512, -6]
> newlist = []
> for n in li: 3

... newlist.append(double(n))

...
> newlist
[2, 4, 6, 10, 18, 20, 512, -6]

1 map takes a function and a list8 and returns a new list by calling the function with each
element of the list in order. In this case, the function simply multiplies each element by 2.

2 You could accomplish the same thing with a list comprehension. List comprehensions
were first introduced in Python 2.0; map has been around forever.

Again, I should point out that map can take a list, a tuple, or any object that acts like a sequence. See previous8

footnote about filter.

310

3 You could, if you insist on thinking like a Visual Basic programmer, use a for loop to
accomplish the same thing.

Example 16.11. map with lists of mixed datatypes

> li = [5, ’a’, (2, ’b’)]
> map(double, li) 1

[10, ’aa’, (2, ’b’, 2, ’b’)]

1 As a side note, I’d like to point out that map works just as well with lists of mixed datatypes,
as long as the function you’re using correctly handles each type. In this case, the double
function simply multiplies the given argument by 2, and Python Does The Right Thing de-
pending on the datatype of the argument. For integers, this means actually multiplying it
by 2; for strings, it means concatenating the string with itself; for tuples, it means making a
new tuple that has all of the elements of the original, then all of the elements of the original
again.

All right, enough play time. Let’s look at some real code.

Example 16.12. map in regression.py

filenameToModuleName = lambda f: os.path.splitext(f)[0] 1

moduleNames = map(filenameToModuleName, files) 2

1 As you saw in Section 4.7, lambda defines an inline function. And as you saw in Example 6.17,
os.path.splitext takes a filename and returns a tuple (name, extension). So file-
nameToModuleName is a function which will take a filename and strip off the file extension,
and return just the name.

2 Calling map takes each filename listed in files, passes it to the function filenameTo-
ModuleName, and returns a list of the return values of each of those function calls. In other
words, you strip the file extension off of each filename, and store the list of all those stripped
filenames in moduleNames.

As you’ll see in the rest of the chapter, you can extend this type of data-centric thinking all the
way to the final goal, which is to define and execute a single test suite that contains the tests
from all of those individual test suites.

16.5 Data-centric programming

By now you’re probably scratching your head wondering why this is better than
using for loops and straight function calls. And that’s a perfectly valid question.

311

Mostly, it’s a matter of perspective. Using map and filter forces you to center
your thinking around your data.

In this case, you started with no data at all; the first thing you did was get the directory path
of the current script, and got a list of files in that directory. That was the bootstrap, and it gave
you real data to work with: a list of filenames.

However, you knew you didn’t care about all of those files, only the ones that were actually
test suites. You had too much data, so you needed to filter it. How did you know which
data to keep? You needed a test to decide, so you defined one and passed it to the filter
function. In this case you used a regular expression to decide, but the concept would be the
same regardless of how you constructed the test.

Now you had the filenames of each of the test suites (and only the test suites, since everything
else had been filtered out), but you really wanted module names instead. You had the right
amount of data, but it was in the wrong format. So you defined a function that would trans-
form a single filename into a module name, and you mapped that function onto the entire list.
From one filename, you can get a module name; from a list of filenames, you can get a list of
module names.

Instead of filter, you could have used a for loop with an if statement. Instead of map, you
could have used a for loop with a function call. But using for loops like that is busywork.
At best, it simply wastes time; at worst, it introduces obscure bugs. For instance, you need to
figure out how to test for the condition “is this file a test suite?” anyway; that’s the application-
specific logic, and no language can write that for us. But once you’ve figured that out, do you
really want go to all the trouble of defining a new empty list and writing a for loop and an
if statement and manually calling append to add each element to the new list if it passes the
condition and then keeping track of which variable holds the new filtered data and which one
holds the old unfiltered data? Why not just define the test condition, then let Python do the
rest of that work for us?

Oh sure, you could try to be fancy and delete elements in place without creating a new list.
But you’ve been burned by that before. Trying to modify a data structure that you’re looping
through can be tricky. You delete an element, then loop to the next element, and suddenly
you’ve skipped one. Is Python one of the languages that works that way? How long would it
take you to figure it out? Would you remember for certain whether it was safe the next time
you tried? Programmers spend so much time and make so many mistakes dealing with purely
technical issues like this, and it’s all pointless. It doesn’t advance your program at all; it’s just
busywork.

I resisted list comprehensions when I first learned Python, and I resisted filter and map even
longer. I insisted on making my life more difficult, sticking to the familiar way of for loops and
if statements and step-by-step code-centric programming. And my Python programs looked

312

a lot like Visual Basic programs, detailing every step of every operation in every function. And
they had all the same types of little problems and obscure bugs. And it was all pointless.

Let it all go. Busywork code is not important. Data is important. And data is not difficult. It’s
only data. If you have too much, filter it. If it’s not what you want, map it. Focus on the data;
leave the busywork behind.

16.6 Dynamically importing modules

OK, enough philosophizing. Let’s talk about dynamically importing modules.

First, let’s look at how you normally import modules. The import module syntax looks in
the search path for the named module and imports it by name. You can even import multiple
modules at once this way, with a comma-separated list. You did this on the very first line of
this chapter’s script.

Example 16.13. Importing multiple modules at once

import sys, os, re, unittest 1

1 This imports four modules at once: sys (for system functions and access to the command
line parameters), os (for operating system functions like directory listings), re (for regular
expressions), and unittest (for unit testing).

Now let’s do the same thing, but with dynamic imports.

Example 16.14. Importing modules dynamically

> sys = __import__(’sys’) 1

> os = __import__(’os’)
> re = __import__(’re’)
> unittest = __import__(’unittest’)
> sys 2

> <module ’sys’ (built-in)>
> os
> <module ’os’ from ’/usr/local/lib/python2.2/os.pyc’>

1 The built-in __import__ function accomplishes the same goal as using the import state-
ment, but it’s an actual function, and it takes a string as an argument.

2 The variable sys is now the sys module, just as if you had said import sys. The variable
os is now the os module, and so forth.

313

So __import__ imports a module, but takes a string argument to do it. In this case the module
you imported was just a hard-coded string, but it could just as easily be a variable, or the result
of a function call. And the variable that you assign the module to doesn’t need to match the
module name, either. You could import a series of modules and assign them to a list.

Example 16.15. Importing a list of modules dynamically

> moduleNames = [’sys’, ’os’, ’re’, ’unittest’] 1

> moduleNames
[’sys’, ’os’, ’re’, ’unittest’]
> modules = map(__import__, moduleNames) 2

> modules 3

[<module ’sys’ (built-in)>,
<module ’os’ from ’c:\Python22\lib\os.pyc’>,
<module ’re’ from ’c:\Python22\lib\re.pyc’>,
<module ’unittest’ from ’c:\Python22\lib\unittest.pyc’>]
> modules[0].version 4

’2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]’
> import sys
> sys.version
’2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]’

1 moduleNames is just a list of strings. Nothing fancy, except that the strings happen to be
names of modules that you could import, if you wanted to.

2 Surprise, you wanted to import them, and you did, by mapping the __import__ function
onto the list. Remember, this takes each element of the list (moduleNames) and calls the
function (__import__) over and over, once with each element of the list, builds a list of the
return values, and returns the result.

3 So now from a list of strings, you’ve created a list of actual modules. (Your paths may be
different, depending on your operating system, where you installed Python, the phase of
the moon, etc.)

4 To drive home the point that these are real modules, let’s look at some module attributes.
Remember, modules[0] is the sys module, so modules[0].version is sys.version.
All the other attributes and methods of these modules are also available. There’s nothing
magic about the import statement, and there’s nothing magic about modules. Modules are
objects. Everything is an object.

Now you should be able to put this all together and figure out what most of this chapter’s code
sample is doing.

314

16.7 Putting it all together

You’ve learned enough now to deconstruct the first seven lines of this chapter’s
code sample: reading a directory and importing selected modules within it.

Example 16.16. The regressionTest function

def regressionTest():
path = os.path.abspath(os.path.dirname(sys.argv[0]))
files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = filter(test.search, files)
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)
modules = map(__import__, moduleNames)

load = unittest.defaultTestLoader.loadTestsFromModule
return unittest.TestSuite(map(load, modules))

Let’s look at it line by line, interactively. Assume that the current directory is c:\diveintopython\py,
which contains the examples that come with this book, including this chapter’s script. As you
saw in Section 16.2, the script directory will end up in the path variable, so let’s start hard-
code that and go from there.

Example 16.17. Step 1: Get all the files

> import sys, os, re, unittest
> path = r’c:\diveintopython\py’
> files = os.listdir(path)
> files 1

[’BaseHTMLProcessor.py’, ’LICENSE.txt’, ’apihelper.py’, ’apihelpertest.py’,
’argecho.py’, ’autosize.py’, ’builddialectexamples.py’, ’dialect.py’,
’fileinfo.py’, ’fullpath.py’, ’kgptest.py’, ’makerealworddoc.py’,
’odbchelper.py’, ’odbchelpertest.py’, ’parsephone.py’, ’piglatin.py’,
’plural.py’, ’pluraltest.py’, ’pyfontify.py’, ’regression.py’, ’roman.py’, ’romantest.py’,
’uncurly.py’, ’unicode2koi8r.py’, ’urllister.py’, ’kgp’, ’plural’, ’roman’,
’colorize.py’]

1 files is a list of all the files and directories in the script’s directory. (If you’ve been run-
ning some of the examples already, you may also see some .pyc files in there as well.)

Example 16.18. Step 2: Filter to find the files you care about

> test = re.compile("test\.py$", re.IGNORECASE) 1

> files = filter(test.search, files) 2

> files 3

[’apihelpertest.py’, ’kgptest.py’, ’odbchelpertest.py’, ’pluraltest.py’, ’romantest.py’]

315

1 This regular expression will match any string that ends with test.py. Note that you
need to escape the period, since a period in a regular expression usually means “match any
single character”, but you actually want to match a literal period instead.

2 The compiled regular expression acts like a function, so you can use it to filter the large
list of files and directories, to find the ones that match the regular expression.

3 And you’re left with the list of unit testing scripts, because they were the only ones named
SOMETHINGtest.py.

Example 16.19. Step 3: Map filenames to module names

> filenameToModuleName = lambda f: os.path.splitext(f)[0] 1

> filenameToModuleName(’romantest.py’) 2

’romantest’
> filenameToModuleName(’odchelpertest.py’)
’odbchelpertest’
> moduleNames = map(filenameToModuleName, files) 3

> moduleNames 4

[’apihelpertest’, ’kgptest’, ’odbchelpertest’, ’pluraltest’, ’romantest’]

1 As you saw in Section 4.7, lambda is a quick-and-dirty way of creating an inline, one-line
function. This one takes a filename with an extension and returns just the filename part,
using the standard library function os.path.splitext that you saw in Example 6.17.

2 filenameToModuleName is a function. There’s nothing magic about lambda functions
as opposed to regular functions that you define with a def statement. You can call the
filenameToModuleName function like any other, and it does just what you wanted it to
do: strips the file extension off of its argument.

3 Now you can apply this function to each file in the list of unit test files, using map.

4 And the result is just what you wanted: a list of modules, as strings.

Example 16.20. Step 4: Mapping module names to modules

> modules = map(__import__, moduleNames) 1

> modules 2

[<module ’apihelpertest’ from ’apihelpertest.py’>,
<module ’kgptest’ from ’kgptest.py’>,
<module ’odbchelpertest’ from ’odbchelpertest.py’>,
<module ’pluraltest’ from ’pluraltest.py’>,
<module ’romantest’ from ’romantest.py’>]
> modules[-1] 3

<module ’romantest’ from ’romantest.py’>

316

1 As you saw in Section 16.6, you can use a combination of map and __import__ to map a
list of module names (as strings) into actual modules (which you can call or access like any
other module).

2 modules is now a list of modules, fully accessible like any other module.

3 The last module in the list is the romantest module, just as if you had said import
romantest.

Example 16.21. Step 5: Loading the modules into a test suite

> load = unittest.defaultTestLoader.loadTestsFromModule
> map(load, modules) 1

[<unittest.TestSuite tests=[
<unittest.TestSuite tests=[<apihelpertest.BadInput testMethod=testNoObject>]>,
<unittest.TestSuite tests=[<apihelpertest.KnownValues testMethod=testApiHelper>]>,
<unittest.TestSuite tests=[

<apihelpertest.ParamChecks testMethod=testCollapse>,
<apihelpertest.ParamChecks testMethod=testSpacing>]>,
...

]
]
> unittest.TestSuite(map(load, modules)) 2

1 These are real module objects. Not only can you access them like any other module, in-
stantiate classes and call functions, you can also introspect into the module to figure out
which classes and functions it has in the first place. That’s what the loadTestsFromMod-
ule method does: it introspects into each module and returns a unittest.TestSuite
object for each module. Each TestSuite object actually contains a list of TestSuite ob-
jects, one for each TestCase class in your module, and each of those TestSuite objects
contains a list of tests, one for each test method in your module.

2 Finally, you wrap the list of TestSuite objects into one big test suite. The unittest mod-
ule has no problem traversing this tree of nested test suites within test suites; eventually it
gets down to an individual test method and executes it, verifies that it passes or fails, and
moves on to the next one.

This introspection process is what the unittest module usually does for us. Remember that
magic-looking unittest.main() function that our individual test modules called to kick the
whole thing off? unittest.main() actually creates an instance of unittest.TestProgram,
which in turn creates an instance of a unittest.defaultTestLoader and loads it up with the
module that called it. (How does it get a reference to the module that called it if you don’t give
it one? By using the equally-magic __import__(’__main__’) command, which dynamically

317

imports the currently-running module. I could write a book on all the tricks and techniques
used in the unittest module, but then I’d never finish this one.)

Example 16.22. Step 6: Telling unittest to use your test suite

if __name__ == "__main__":
unittest.main(defaultTest="regressionTest") 1

1 Instead of letting the unittest module do all its magic for us, you’ve done most of it
yourself. You’ve created a function (regressionTest) that imports the modules yourself,
calls unittest.defaultTestLoader yourself, and wraps it all up in a test suite. Now
all you need to do is tell unittest that, instead of looking for tests and building a test
suite in the usual way, it should just call the regressionTest function, which returns a
ready-to-use TestSuite.

16.8 Summary

The regression.py program and its output should now make perfect sense.

You should now feel comfortable doing all of these things:

• Manipulating path information from the command line.

• Filtering lists using filter instead of list comprehensions.

• Mapping lists using map instead of list comprehensions.

• Dynamically importing modules.

318

17 Dynamic functions

17.1 Diving in

I want to talk about plural nouns. Also, functions that return other functions,
advanced regular expressions, and generators. Generators are new in Python
2.3. But first, let’s talk about how to make plural nouns.

If you haven’t read Chapter 7, now would be a good time. This chapter assumes you under-
stand the basics of regular expressions, and quickly descends into more advanced uses.

English is a schizophrenic language that borrows from a lot of other languages, and the rules
for making singular nouns into plural nouns are varied and complex. There are rules, and then
there are exceptions to those rules, and then there are exceptions to the exceptions.

If you grew up in an English-speaking country or learned English in a formal school setting,
you’re probably familiar with the basic rules:

1. If a word ends in S, X, or Z, add ES. “Bass” becomes “basses”, “fax” becomes “faxes”, and
“waltz” becomes “waltzes”.

2. If a word ends in a noisy H, add ES; if it ends in a silent H, just add S. What’s a noisy
H? One that gets combined with other letters to make a sound that you can hear. So
“coach” becomes “coaches” and “rash” becomes “rashes”, because you can hear the CH
and SH sounds when you say them. But “cheetah” becomes “cheetahs”, because the H is
silent.

3. If a word ends in Y that sounds like I, change the Y to IES; if the Y is combined with a
vowel to sound like something else, just add S. So “vacancy” becomes “vacancies”, but
“day” becomes “days”.

4. If all else fails, just add S and hope for the best.

(I know, there are a lot of exceptions. “Man” becomes “men” and “woman” becomes “women”,
but “human” becomes “humans”. “Mouse” becomes “mice” and “louse” becomes “lice”, but
“house” becomes “houses”. “Knife” becomes “knives” and “wife” becomes “wives”, but
“lowlife” becomes “lowlifes”. And don’t even get me started on words that are their own
plural, like “sheep”, “deer”, and “haiku”.)

Other languages are, of course, completely different.

Let’s design a module that pluralizes nouns. Start with just English nouns, and just these four
rules, but keep in mind that you’ll inevitably need to add more rules, and you may eventually
need to add more languages.

319

17.2 plural.py, stage 1
So you’re looking at words, which at least in English are strings of characters.
And you have rules that say you need to find different combinations of char-
acters, and then do different things to them. This sounds like a job for regular
expressions.

Example 17.1. plural1.py

import re

def plural(noun):
if re.search(’[sxz]$’, noun): 1

return re.sub(’$’, ’es’, noun) 2

elif re.search(’[^aeioudgkprt]h$’, noun):
return re.sub(’$’, ’es’, noun)

elif re.search(’[^aeiou]y$’, noun):
return re.sub(’y$’, ’ies’, noun)

else:
return noun + ’s’

1 OK, this is a regular expression, but it uses a syntax you didn’t see in Chapter 7. The
square brackets mean “match exactly one of these characters”. So [sxz] means “s, or x, or
z”, but only one of them. The $ should be familiar; it matches the end of string. So you’re
checking to see if noun ends with s, x, or z.

2 This re.sub function performs regular expression-based string substitutions. Let’s look
at it in more detail.

Example 17.2. Introducing re.sub

> import re
> re.search(’[abc]’, ’Mark’) 1

<_sre.SRE_Match object at 0x001C1FA8>
> re.sub(’[abc]’, ’o’, ’Mark’) 2

’Mork’
> re.sub(’[abc]’, ’o’, ’rock’) 3

’rook’
> re.sub(’[abc]’, ’o’, ’caps’) 4

’oops’

1 Does the string Mark contain a, b, or c? Yes, it contains a.

2 OK, now find a, b, or c, and replace it with o. Mark becomes Mork.

3 The same function turns rock into rook.

320

4 You might think this would turn caps into oaps, but it doesn’t. re.sub replaces all of
the matches, not just the first one. So this regular expression turns caps into oops, because
both the c and the a get turned into o.

Example 17.3. Back to plural1.py

import re

def plural(noun):
if re.search(’[sxz]$’, noun):

return re.sub(’$’, ’es’, noun) 1

elif re.search(’[^aeioudgkprt]h$’, noun): 2

return re.sub(’$’, ’es’, noun) 3

elif re.search(’[^aeiou]y$’, noun):
return re.sub(’y$’, ’ies’, noun)

else:
return noun + ’s’

1 Back to the plural function. What are you doing? You’re replacing the end of string
with es. In other words, adding es to the string. You could accomplish the same thing
with string concatenation, for example noun + ’es’, but I’m using regular expressions
for everything, for consistency, for reasons that will become clear later in the chapter.

2 Look closely, this is another new variation. The ^ as the first character inside the square
brackets means something special: negation. [^abc] means “any single character except
a, b, or c”. So [^aeioudgkprt] means any character except a, e, i, o, u, d, g, k, p, r, or
t. Then that character needs to be followed by h, followed by end of string. You’re looking
for words that end in H where the H can be heard.

3 Same pattern here: match words that end in Y, where the character before the Y is not a,
e, i, o, or u. You’re looking for words that end in Y that sounds like I.

Example 17.4. More on negation regular expressions

> import re
> re.search(’[^aeiou]y$’, ’vacancy’) 1

<_sre.SRE_Match object at 0x001C1FA8>
> re.search(’[^aeiou]y$’, ’boy’) 2

>
> re.search(’[^aeiou]y$’, ’day’)
>
> re.search(’[^aeiou]y$’, ’pita’) 3

>

1 vacancy matches this regular expression, because it ends in cy, and c is not a, e, i, o, or
u.

321

2 boy does not match, because it ends in oy, and you specifically said that the character
before the y could not be o. day does not match, because it ends in ay.

3 pita does not match, because it does not end in y.

Example 17.5. More on re.sub

> re.sub(’y$’, ’ies’, ’vacancy’) 1

’vacancies’
> re.sub(’y$’, ’ies’, ’agency’)
’agencies’
> re.sub(’([^aeiou])y$’, r’\1ies’, ’vacancy’) 2

’vacancies’

1 This regular expression turns vacancy into vacancies and agency into agencies, which
is what you wanted. Note that it would also turn boy into boies, but that will never hap-
pen in the function because you did that re.search first to find out whether you should
do this re.sub.

2 Just in passing, I want to point out that it is possible to combine these two regular expres-
sions (one to find out if the rule applies, and another to actually apply it) into a single reg-
ular expression. Here’s what that would look like. Most of it should look familiar: you’re
using a remembered group, which you learned in Section 7.6, to remember the character
before the y. Then in the substitution string, you use a new syntax, \1, which means “hey,
that first group you remembered? put it here”. In this case, you remember the c before the
y, and then when you do the substitution, you substitute c in place of c, and ies in place
of y. (If you have more than one remembered group, you can use \2 and \3 and so on.)

Regular expression substitutions are extremely powerful, and the \1 syntax makes them even
more powerful. But combining the entire operation into one regular expression is also much
harder to read, and it doesn’t directly map to the way you first described the pluralizing rules.
You originally laid out rules like “if the word ends in S, X, or Z, then add ES”. And if you look
at this function, you have two lines of code that say “if the word ends in S, X, or Z, then add
ES”. It doesn’t get much more direct than that.

17.3 plural.py, stage 2

Now you’re going to add a level of abstraction. You started by defining a list
of rules: if this, then do that, otherwise go to the next rule. Let’s temporarily
complicate part of the program so you can simplify another part.

322

Example 17.6. plural2.py

import re

def match_sxz(noun):
return re.search(’[sxz]$’, noun)

def apply_sxz(noun):
return re.sub(’$’, ’es’, noun)

def match_h(noun):
return re.search(’[^aeioudgkprt]h$’, noun)

def apply_h(noun):
return re.sub(’$’, ’es’, noun)

def match_y(noun):
return re.search(’[^aeiou]y$’, noun)

def apply_y(noun):
return re.sub(’y$’, ’ies’, noun)

def match_default(noun):
return 1

def apply_default(noun):
return noun + ’s’

rules = ((match_sxz, apply_sxz),
(match_h, apply_h),
(match_y, apply_y),
(match_default, apply_default)
) 1

def plural(noun):
for matchesRule, applyRule in rules: 2

if matchesRule(noun): 3

return applyRule(noun) 4

1 This version looks more complicated (it’s certainly longer), but it does exactly the same
thing: try to match four different rules, in order, and apply the appropriate regular expres-
sion when a match is found. The difference is that each individual match and apply rule is
defined in its own function, and the functions are then listed in this rules variable, which
is a tuple of tuples.

2 Using a for loop, you can pull out the match and apply rules two at a time (one match,
one apply) from the rules tuple. On the first iteration of the for loop, matchesRule will

323

get match_sxz, and applyRule will get apply_sxz. On the second iteration (assuming
you get that far), matchesRule will be assigned match_h, and applyRule will be assigned
apply_h.

3 Remember that everything in Python is an object, including functions. rules contains
actual functions; not names of functions, but actual functions. When they get assigned in
the for loop, then matchesRule and applyRule are actual functions that you can call. So
on the first iteration of the for loop, this is equivalent to calling matches_sxz(noun).

4 On the first iteration of the for loop, this is equivalent to calling apply_sxz(noun), and
so forth.

If this additional level of abstraction is confusing, try unrolling the function to see the equiva-
lence. This for loop is equivalent to the following:

Example 17.7. Unrolling the plural function

def plural(noun):
if match_sxz(noun):

return apply_sxz(noun)
if match_h(noun):

return apply_h(noun)
if match_y(noun):

return apply_y(noun)
if match_default(noun):

return apply_default(noun)

The benefit here is that that plural function is now simplified. It takes a list of rules, defined
elsewhere, and iterates through them in a generic fashion. Get a match rule; does it match?
Then call the apply rule. The rules could be defined anywhere, in any way. The plural
function doesn’t care.

Now, was adding this level of abstraction worth it? Well, not yet. Let’s consider what it would
take to add a new rule to the function. Well, in the previous example, it would require adding
an if statement to the plural function. In this example, it would require adding two func-
tions, match_foo and apply_foo, and then updating the rules list to specify where in the
order the new match and apply functions should be called relative to the other rules.

This is really just a stepping stone to the next section. Let’s move on.

17.4 plural.py, stage 3

Defining separate named functions for each match and apply rule isn’t really
necessary. You never call them directly; you define them in the rules list and

324

call them through there. Let’s streamline the rules definition by anonymizing
those functions.

Example 17.8. plural3.py

import re

rules = \
(

(
lambda word: re.search(’[sxz]$’, word),
lambda word: re.sub(’$’, ’es’, word)

),
(
lambda word: re.search(’[^aeioudgkprt]h$’, word),
lambda word: re.sub(’$’, ’es’, word)

),
(
lambda word: re.search(’[^aeiou]y$’, word),
lambda word: re.sub(’y$’, ’ies’, word)

),
(
lambda word: re.search(’$’, word),
lambda word: re.sub(’$’, ’s’, word)

)
) 1

def plural(noun):
for matchesRule, applyRule in rules: 2

if matchesRule(noun):
return applyRule(noun)

1 This is the same set of rules as you defined in stage 2. The only difference is that instead
of defining named functions like match_sxz and apply_sxz, you have “inlined” those
function definitions directly into the rules list itself, using lambda functions.

2 Note that the plural function hasn’t changed at all. It iterates through a set of rule func-
tions, checks the first rule, and if it returns a true value, calls the second rule and returns the
value. Same as above, word for word. The only difference is that the rule functions were
defined inline, anonymously, using lambda functions. But the plural function doesn’t
care how they were defined; it just gets a list of rules and blindly works through them.

Now to add a new rule, all you need to do is define the functions directly in the rules list itself:
one match rule, and one apply rule. But defining the rule functions inline like this makes it very
clear that you have some unnecessary duplication here. You have four pairs of functions, and

325

they all follow the same pattern. The match function is a single call to re.search, and the
apply function is a single call to re.sub. Let’s factor out these similarities.

17.5 plural.py, stage 4

Let’s factor out the duplication in the code so that defining new rules can be
easier.

Example 17.9. plural4.py

import re

def buildMatchAndApplyFunctions((pattern, search, replace)):
matchFunction = lambda word: re.search(pattern, word) 1

applyFunction = lambda word: re.sub(search, replace, word) 2

return (matchFunction, applyFunction) 3

1 buildMatchAndApplyFunctions is a function that builds other functions dynamically.
It takes pattern, search and replace (actually it takes a tuple, but more on that in a
minute), and you can build the match function using the lambda syntax to be a function
that takes one parameter (word) and calls re.search with the pattern that was passed to
the buildMatchAndApplyFunctions function, and the word that was passed to the match
function you’re building. Whoa.

2 Building the apply function works the same way. The apply function is a function that
takes one parameter, and calls re.sub with the search and replace parameters that were
passed to the buildMatchAndApplyFunctions function, and the word that was passed
to the apply function you’re building. This technique of using the values of outside para-
meters within a dynamic function is called closures. You’re essentially defining constants
within the apply function you’re building: it takes one parameter (word), but it then acts
on that plus two other values (search and replace) which were set when you defined the
apply function.

3 Finally, the buildMatchAndApplyFunctions function returns a tuple of two values: the
two functions you just created. The constants you defined within those functions (pat-
tern within matchFunction, and search and replace within applyFunction) stay with
those functions, even after you return from buildMatchAndApplyFunctions. That’s in-
sanely cool.

326

If this is incredibly confusing (and it should be, this is weird stuff), it may become clearer when
you see how to use it.

Example 17.10. plural4.py continued

patterns = \
(

(’[sxz]$’, ’$’, ’es’),
(’[^aeioudgkprt]h$’, ’$’, ’es’),
(’(qu|[^aeiou])y$’, ’y$’, ’ies’),
(’$’, ’$’, ’s’)

) 1

rules = map(buildMatchAndApplyFunctions, patterns) 2

1 Our pluralization rules are now defined as a series of strings (not functions). The first
string is the regular expression that you would use in re.search to see if this rule matches;
the second and third are the search and replace expressions you would use in re.sub to
actually apply the rule to turn a noun into its plural.

2 This line is magic. It takes the list of strings in patterns and turns them into a list of func-
tions. How? By mapping the strings to the buildMatchAndApplyFunctions function,
which just happens to take three strings as parameters and return a tuple of two functions.
This means that rules ends up being exactly the same as the previous example: a list of
tuples, where each tuple is a pair of functions, where the first function is the match function
that calls re.search, and the second function is the apply function that calls re.sub.

I swear I am not making this up: rules ends up with exactly the same list of functions as the
previous example. Unroll the rules definition, and you’ll get this:

Example 17.11. Unrolling the rules definition

rules = \
(

(
lambda word: re.search(’[sxz]$’, word),
lambda word: re.sub(’$’, ’es’, word)

),
(
lambda word: re.search(’[^aeioudgkprt]h$’, word),
lambda word: re.sub(’$’, ’es’, word)

),
(
lambda word: re.search(’[^aeiou]y$’, word),
lambda word: re.sub(’y$’, ’ies’, word)

),
(

327

lambda word: re.search(’$’, word),
lambda word: re.sub(’$’, ’s’, word)

)
)

Example 17.12. plural4.py, finishing up

def plural(noun):
for matchesRule, applyRule in rules: 1

if matchesRule(noun):
return applyRule(noun)

1 Since the rules list is the same as the previous example, it should come as no surprise
that the plural function hasn’t changed. Remember, it’s completely generic; it takes a
list of rule functions and calls them in order. It doesn’t care how the rules are defined. In
stage 2, they were defined as seperate named functions. In stage 3, they were defined as
anonymous lambda functions. Now in stage 4, they are built dynamically by mapping the
buildMatchAndApplyFunctions function onto a list of raw strings. Doesn’t matter; the
plural function still works the same way.

Just in case that wasn’t mind-blowing enough, I must confess that there was a subtlety in the
definition of buildMatchAndApplyFunctions that I skipped over. Let’s go back and take
another look.

Example 17.13. Another look at buildMatchAndApplyFunctions

def buildMatchAndApplyFunctions((pattern, search, replace)): 1

1 Notice the double parentheses? This function doesn’t actually take three parameters; it
actually takes one parameter, a tuple of three elements. But the tuple is expanded when
the function is called, and the three elements of the tuple are each assigned to different
variables: pattern, search, and replace. Confused yet? Let’s see it in action.

Example 17.14. Expanding tuples when calling functions

> def foo((a, b, c)):
... print c
... print b
... print a
> parameters = (’apple’, ’bear’, ’catnap’)
> foo(parameters) 1

catnap
bear
apple

328

1 The proper way to call the function foo is with a tuple of three elements. When the
function is called, the elements are assigned to different local variables within foo.

Now let’s go back and see why this auto-tuple-expansion trick was necessary. patterns was a
list of tuples, and each tuple had three elements. When you called map(buildMatchAndApplyFunctions,
patterns), that means that buildMatchAndApplyFunctions is not getting called with three
parameters. Using map to map a single list onto a function always calls the function with a sin-
gle parameter: each element of the list. In the case of patterns, each element of the list is a
tuple, so buildMatchAndApplyFunctions always gets called with the tuple, and you use the
auto-tuple-expansion trick in the definition of buildMatchAndApplyFunctions to assign the
elements of that tuple to named variables that you can work with.

17.6 plural.py, stage 5

You’ve factored out all the duplicate code and added enough abstractions so that
the pluralization rules are defined in a list of strings. The next logical step is to
take these strings and put them in a separate file, where they can be maintained
separately from the code that uses them.

First, let’s create a text file that contains the rules you want. No fancy data structures, just
space- (or tab-)delimited strings in three columns. You’ll call it rules.en; “en” stands for
English. These are the rules for pluralizing English nouns. You could add other rule files for
other languages later.

Example 17.15. rules.en

[sxz]$ $ es
[^aeioudgkprt]h$ $ es
[^aeiou]y$ y$ ies
$ $ s

Now let’s see how you can use this rules file.

Example 17.16. plural5.py

import re
import string

def buildRule((pattern, search, replace)):
return lambda word: re.search(pattern, word) and re.sub(search, replace, word) 1

329

def plural(noun, language=’en’): 2

lines = file(’rules.%s’ % language).readlines() 3

patterns = map(string.split, lines) 4

rules = map(buildRule, patterns) 5

for rule in rules:
result = rule(noun) 6

if result: return result

1 You’re still using the closures technique here (building a function dynamically that uses
variables defined outside the function), but now you’ve combined the separate match and
apply functions into one. (The reason for this change will become clear in the next section.)
This will let you accomplish the same thing as having two functions, but you’ll need to call
it differently, as you’ll see in a minute.

2 Our plural function now takes an optional second parameter, language, which defaults
to en.

3 You use the language parameter to construct a filename, then open the file and read the
contents into a list. If language is en, then you’ll open the rules.en file, read the entire
thing, break it up by carriage returns, and return a list. Each line of the file will be one
element in the list.

4 As you saw, each line in the file really has three values, but they’re separated by white-
space (tabs or spaces, it makes no difference). Mapping the string.split function onto
this list will create a new list where each element is a tuple of three strings. So a line like
[sxz]$ $ es will be broken up into the tuple (’[sxz]$’, ’$’, ’es’). This means that
patterns will end up as a list of tuples, just like you hard-coded it in stage 4.

5 If patterns is a list of tuples, then rules will be a list of the functions created dynami-
cally by each call to buildRule. Calling buildRule((’[sxz]$’, ’$’, ’es’)) returns
a function that takes a single parameter, word. When this returned function is called, it will
execute re.search(’[sxz]$’, word) and re.sub(’$’, ’es’, word).

6 Because you’re now building a combined match-and-apply function, you need to call it
differently. Just call the function, and if it returns something, then that’s the plural; if it
returns nothing (None), then the rule didn’t match and you need to try another rule.

So the improvement here is that you’ve completely separated the pluralization rules into an
external file. Not only can the file be maintained separately from the code, but you’ve set up
a naming scheme where the same plural function can use different rule files, based on the
language parameter.

The downside here is that you’re reading that file every time you call the plural function.
I thought I could get through this entire book without using the phrase “left as an exercise

330

for the reader”, but here you go: building a caching mechanism for the language-specific rule
files that auto-refreshes itself if the rule files change between calls is left as an exercise for the
reader. Have fun.

17.7 plural.py, stage 6

Now you’re ready to talk about generators.

Example 17.17. plural6.py

import re

def rules(language):
for line in file(’rules.%s’ % language):

pattern, search, replace = line.split()
yield lambda word: re.search(pattern, word) and re.sub(search, replace, word)

def plural(noun, language=’en’):
for applyRule in rules(language):

result = applyRule(noun)
if result: return result

This uses a technique called generators, which I’m not even going to try to explain until you
look at a simpler example first.

Example 17.18. Introducing generators

> def make_counter(x):
... print ’entering make_counter’
... while 1:
... yield x 1

... print ’incrementing x’

... x = x + 1

...
> counter = make_counter(2) 2

> counter 3

<generator object at 0x001C9C10>
> counter.next() 4

entering make_counter
2
> counter.next() 5

incrementing x
3
> counter.next() 6

incrementing x
4

331

1 The presence of the yield keyword in make_counter means that this is not a normal
function. It is a special kind of function which generates values one at a time. You can
think of it as a resumable function. Calling it will return a generator that can be used to
generate successive values of x.

2 To create an instance of the make_counter generator, just call it like any other function.
Note that this does not actually execute the function code. You can tell this because the first
line of make_counter is a print statement, but nothing has been printed yet.

3 The make_counter function returns a generator object.

4 The first time you call the next() method on the generator object, it executes the code
in make_counter up to the first yield statement, and then returns the value that was
yielded. In this case, that will be 2, because you originally created the generator by calling
make_counter(2).

5 Repeatedly calling next() on the generator object resumes where you left off and contin-
ues until you hit the next yield statement. The next line of code waiting to be executed
is the print statement that prints incrementing x, and then after that the x = x + 1
statement that actually increments it. Then you loop through the while loop again, and
the first thing you do is yield x, which returns the current value of x (now 3).

6 The second time you call counter.next(), you do all the same things again, but this
time x is now 4. And so forth. Since make_counter sets up an infinite loop, you could
theoretically do this forever, and it would just keep incrementing x and spitting out values.
But let’s look at more productive uses of generators instead.

Example 17.19. Using generators instead of recursion

def fibonacci(max):
a, b = 0, 1 1

while a < max:
yield a 2

a, b = b, a+b 3

1 The Fibonacci sequence is a sequence of numbers where each number is the sum of the
two numbers before it. It starts with 0 and 1, goes up slowly at first, then more and more
rapidly. To start the sequence, you need two variables: a starts at 0, and b starts at 1.

2 a is the current number in the sequence, so yield it.

3 b is the next number in the sequence, so assign that to a, but also calculate the next value
(a+b) and assign that to b for later use. Note that this happens in parallel; if a is 3 and b is

332

5, then a, b = b, a+b will set a to 5 (the previous value of b) and b to 8 (the sum of the
previous values of a and b).

So you have a function that spits out successive Fibonacci numbers. Sure, you could do that
with recursion, but this way is easier to read. Also, it works well with for loops.

Example 17.20. Generators in for loops

> for n in fibonacci(1000): 1

... print n, 2

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

1 You can use a generator like fibonacci in a for loop directly. The for loop will create
the generator object and successively call the next() method to get values to assign to the
for loop index variable (n).

2 Each time through the for loop, n gets a new value from the yield statement in fi-
bonacci, and all you do is print it out. Once fibonacci runs out of numbers (a gets
bigger than max, which in this case is 1000), then the for loop exits gracefully.

OK, let’s go back to the plural function and see how you’re using this.

Example 17.21. Generators that generate dynamic functions

def rules(language):
for line in file(’rules.%s’ % language): 1

pattern, search, replace = line.split() 2

yield lambda word: re.search(pattern, word) and re.sub(search, replace, word) 3

def plural(noun, language=’en’):
for applyRule in rules(language): 4

result = applyRule(noun)
if result: return result

1 for line in file(...) is a common idiom for reading lines from a file, one line at a
time. It works because file actually returns a generator whose next() method returns
the next line of the file. That is so insanely cool, I wet myself just thinking about it.

2 No magic here. Remember that the lines of the rules file have three values separated by
whitespace, so line.split() returns a tuple of 3 values, and you assign those values to 3
local variables.

3 And then you yield. What do you yield? A function, built dynamically with lambda,
that is actually a closure (it uses the local variables pattern, search, and replace as
constants). In other words, rules is a generator that spits out rule functions.

333

4 Since rules is a generator, you can use it directly in a for loop. The first time through the
for loop, you will call the rules function, which will open the rules file, read the first line
out of it, dynamically build a function that matches and applies the first rule defined in the
rules file, and yields the dynamically built function. The second time through the for loop,
you will pick up where you left off in rules (which was in the middle of the for line in
file(...) loop), read the second line of the rules file, dynamically build another function
that matches and applies the second rule defined in the rules file, and yields it. And so
forth.

What have you gained over stage 5? In stage 5, you read the entire rules file and built a list
of all the possible rules before you even tried the first one. Now with generators, you can do
everything lazily: you open the first and read the first rule and create a function to try it, but if
that works you don’t ever read the rest of the file or create any other functions.

Further reading

• PEP 255 defines generators.

• Python Cookbook has many more examples of generators.

17.8 Summary

You talked about several different advanced techniques in this chapter. Not all
of them are appropriate for every situation.

You should now be comfortable with all of these techniques:

• Performing string substitution with regular expressions.

• Treating functions as objects, storing them in lists, assigning them to variables, and calling
them through those variables.

• Building dynamic functions with lambda.

• Building closures, dynamic functions that contain surrounding variables as constants.

• Building generators, resumable functions that perform incremental logic and return differ-
ent values each time you call them.

Adding abstractions, building functions dynamically, building closures, and using generators
can all make your code simpler, more readable, and more flexible. But they can also end
up making it more difficult to debug later. It’s up to you to find the right balance between
simplicity and power.

http://www.python.org/peps/pep-0255.html
http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com

334

18 Performance Tuning

Performance tuning is a many-splendored thing. Just because Python is an in-
terpreted language doesn’t mean you shouldn’t worry about code optimization.
But don’t worry about it too much.

18.1 Diving in

There are so many pitfalls involved in optimizing your code, it’s hard to know
where to start.

Let’s start here: are you sure you need to do it at all? Is your code really so bad? Is it worth
the time to tune it? Over the lifetime of your application, how much time is going to be spent
running that code, compared to the time spent waiting for a remote database server, or waiting
for user input?

Second, are you sure you’re done coding? Premature optimization is like spreading frosting on
a half-baked cake. You spend hours or days (or more) optimizing your code for performance,
only to discover it doesn’t do what you need it to do. That’s time down the drain.

This is not to say that code optimization is worthless, but you need to look at the whole system
and decide whether it’s the best use of your time. Every minute you spend optimizing code is
a minute you’re not spending adding new features, or writing documentation, or playing with
your kids, or writing unit tests.

Oh yes, unit tests. It should go without saying that you need a complete set of unit tests before
you begin performance tuning. The last thing you need is to introduce new bugs while fiddling
with your algorithms.

With these caveats in place, let’s look at some techniques for optimizing Python code. The
code in question is an implementation of the Soundex algorithm. Soundex was a method used
in the early 20th century for categorizing surnames in the United States census. It grouped
similar-sounding names together, so even if a name was misspelled, researchers had a chance
of finding it. Soundex is still used today for much the same reason, although of course we use
computerized database servers now. Most database servers include a Soundex function.

There are several subtle variations of the Soundex algorithm. This is the one used in this
chapter:

1. Keep the first letter of the name as-is.

2. Convert the remaining letters to digits, according to a specific table:

335

− B, F, P, and V become 1.

− C, G, J, K, Q, S, X, and Z become 2.

− D and T become 3.

− L becomes 4.

− M and N become 5.

− R becomes 6.

− All other letters become 9.

3. Remove consecutive duplicates.

4. Remove all 9s altogether.

5. If the result is shorter than four characters (the first letter plus three digits), pad the result
with trailing zeros.

6. if the result is longer than four characters, discard everything after the fourth character.

For example, my name, Pilgrim, becomes P942695. That has no consecutive duplicates, so
nothing to do there. Then you remove the 9s, leaving P4265. That’s too long, so you discard
the excess character, leaving P426.

Another example: Woo becomes W99, which becomes W9, which becomes W, which gets
padded with zeros to become W000.

Here’s a first attempt at a Soundex function:

Example 18.1. soundex/stage1/soundex1a.py

If you have not already done so, you can download this and other examples used in this book.

import string, re

charToSoundex = {"A": "9",
"B": "1",
"C": "2",
"D": "3",
"E": "9",
"F": "1",
"G": "2",
"H": "9",
"I": "9",
"J": "2",

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

336

"K": "2",
"L": "4",
"M": "5",
"N": "5",
"O": "9",
"P": "1",
"Q": "2",
"R": "6",
"S": "2",
"T": "3",
"U": "9",
"V": "1",
"W": "9",
"X": "2",
"Y": "9",
"Z": "2"}

def soundex(source):
"convert string to Soundex equivalent"

Soundex requirements:
source string must be at least 1 character
and must consist entirely of letters
allChars = string.uppercase + string.lowercase
if not re.search(’^[%s]+$’ % allChars, source):

return "0000"

Soundex algorithm:
1. make first character uppercase
source = source[0].upper() + source[1:]

2. translate all other characters to Soundex digits
digits = source[0]
for s in source[1:]:

s = s.upper()
digits += charToSoundex[s]

3. remove consecutive duplicates
digits2 = digits[0]
for d in digits[1:]:

if digits2[-1] != d:
digits2 += d

4. remove all "9"s
digits3 = re.sub(’9’, ’’, digits2)

5. pad end with "0"s to 4 characters
while len(digits3) < 4:

digits3 += "0"

337

6. return first 4 characters
return digits3[:4]

if __name__ == ’__main__’:
from timeit import Timer
names = (’Woo’, ’Pilgrim’, ’Flingjingwaller’)
for name in names:

statement = "soundex(’%s’)" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

Further Reading on Soundex

• Soundexing and Genealogy gives a chronology of the evolution of the Soundex and its
regional variations.

18.2 Using the timeit Module

The most important thing you need to know about optimizing Python code is
that you shouldn’t write your own timing function.

Timing short pieces of code is incredibly complex. How much processor time is your computer
devoting to running this code? Are there things running in the background? Are you sure?
Every modern computer has background processes running, some all the time, some intermit-
tently. Cron jobs fire off at consistent intervals; background services occasionally “wake up” to
do useful things like check for new mail, connect to instant messaging servers, check for ap-
plication updates, scan for viruses, check whether a disk has been inserted into your CD drive
in the last 100 nanoseconds, and so on. Before you start your timing tests, turn everything off
and disconnect from the network. Then turn off all the things you forgot to turn off the first
time, then turn off the service that’s incessantly checking whether the network has come back
yet, then ...

And then there’s the matter of the variations introduced by the timing framework itself. Does
the Python interpreter cache method name lookups? Does it cache code block compilations?
Regular expressions? Will your code have side effects if run more than once? Don’t forget that
you’re dealing with small fractions of a second, so small mistakes in your timing framework
will irreparably skew your results.

The Python community has a saying: “Python comes with batteries included.” Don’t write
your own timing framework. Python 2.3 comes with a perfectly good one called timeit.

Example 18.2. Introducing timeit

If you have not already done so, you can download this and other examples used in this book.

http://www.avotaynu.com/soundex.html
http://www.avotaynu.com/soundex.html
http://www.avotaynu.com/soundex.html
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://diveintopython.org/download/diveintopython-examples-5.4.zip

338

> import timeit
> t = timeit.Timer("soundex.soundex(’Pilgrim’)",
... "import soundex") 1

> t.timeit() 2

8.21683733547
> t.repeat(3, 2000000) 3

[16.48319309109, 16.46128984923, 16.44203948912]

1 The timeit module defines one class, Timer, which takes two arguments. Both argu-
ments are strings. The first argument is the statement you wish to time; in this case, you are
timing a call to the Soundex function within the soundex with an argument of ’Pilgrim’.
The second argument to the Timer class is the import statement that sets up the envi-
ronment for the statement. Internally, timeit sets up an isolated virtual environment,
manually executes the setup statement (importing the soundex module), then manually
compiles and executes the timed statement (calling the Soundex function).

2 Once you have the Timer object, the easiest thing to do is call timeit(), which calls your
function 1 million times and returns the number of seconds it took to do it.

3 The other major method of the Timer object is repeat(), which takes two optional argu-
ments. The first argument is the number of times to repeat the entire test, and the second
argument is the number of times to call the timed statement within each test. Both argu-
ments are optional, and they default to 3 and 1000000 respectively. The repeat() method
returns a list of the times each test cycle took, in seconds.

You can use the timeit module on the command line to test an existing Python program,
without modifying the code. See http://docs.python.org/lib/node396.html for docu-
mentation on the command-line flags.

Note that repeat() returns a list of times. The times will almost never be identical, due
to slight variations in how much processor time the Python interpreter is getting (and those
pesky background processes that you can’t get rid of). Your first thought might be to say “Let’s
take the average and call that The True Number.”

In fact, that’s almost certainly wrong. The tests that took longer didn’t take longer because of
variations in your code or in the Python interpreter; they took longer because of those pesky
background processes, or other factors outside of the Python interpreter that you can’t fully
eliminate. If the different timing results differ by more than a few percent, you still have too
much variability to trust the results. Otherwise, take the minimum time and discard the rest.

Python has a handy min function that takes a list and returns the smallest value:

>>> min(t.repeat(3, 1000000))
8.22203948912

http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/node396.html

339

The timeit module only works if you already know what piece of code you need to optimize.
If you have a larger Python program and don’t know where your performance problems are,
check out the hotshot module.

18.3 Optimizing Regular Expressions

The first thing the Soundex function checks is whether the input is a non-empty
string of letters. What’s the best way to do this?

If you answered “regular expressions”, go sit in the corner and contemplate your bad instincts.
Regular expressions are almost never the right answer; they should be avoided whenever pos-
sible. Not only for performance reasons, but simply because they’re difficult to debug and
maintain. Also for performance reasons.

This code fragment from soundex/stage1/soundex1a.py checks whether the function argu-
ment source is a word made entirely of letters, with at least one letter (not the empty string):

allChars = string.uppercase + string.lowercase
if not re.search(’^[%s]+$’ % allChars, source):

return "0000"

How does soundex1a.py perform? For convenience, the __main__ section of the script con-
tains this code that calls the timeit module, sets up a timing test with three different names,
tests each name three times, and displays the minimum time for each:

if __name__ == ’__main__’:
from timeit import Timer
names = (’Woo’, ’Pilgrim’, ’Flingjingwaller’)
for name in names:

statement = "soundex(’%s’)" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

So how does soundex1a.py perform with this regular expression?

C:\samples\soundex\stage1>python soundex1a.py
Woo W000 19.3356647283
Pilgrim P426 24.0772053431
Flingjingwaller F452 35.0463220884

As you might expect, the algorithm takes significantly longer when called with longer names.
There will be a few things we can do to narrow that gap (make the function take less relative
time for longer input), but the nature of the algorithm dictates that it will never run in constant
time.

http://docs.python.org/lib/module-hotshot.html
http://docs.python.org/lib/module-hotshot.html
http://docs.python.org/lib/module-hotshot.html

340

The other thing to keep in mind is that we are testing a representative sample of names. Woo
is a kind of trivial case, in that it gets shorted down to a single letter and then padded with
zeros. Pilgrim is a normal case, of average length and a mixture of significant and ignored
letters. Flingjingwaller is extraordinarily long and contains consecutive duplicates. Other
tests might also be helpful, but this hits a good range of different cases.

So what about that regular expression? Well, it’s inefficient. Since the expression is testing for
ranges of characters (A-Z in uppercase, and a-z in lowercase), we can use a shorthand regular
expression syntax. Here is soundex/stage1/soundex1b.py:

if not re.search(’^[A-Za-z]+$’, source):
return "0000"

timeit says soundex1b.py is slightly faster than soundex1a.py, but nothing to get terribly
excited about:

C:\samples\soundex\stage1>python soundex1b.py
Woo W000 17.1361133887
Pilgrim P426 21.8201693232
Flingjingwaller F452 32.7262294509

We saw in Section 15.3 that regular expressions can be compiled and reused for faster results.
Since this regular expression never changes across function calls, we can compile it once and
use the compiled version. Here is soundex/stage1/soundex1c.py:

isOnlyChars = re.compile(’^[A-Za-z]+$’).search
def soundex(source):

if not isOnlyChars(source):
return "0000"

Using a compiled regular expression in soundex1c.py is significantly faster:

C:\samples\soundex\stage1>python soundex1c.py
Woo W000 14.5348347346
Pilgrim P426 19.2784703084
Flingjingwaller F452 30.0893873383

But is this the wrong path? The logic here is simple: the input source needs to be non-empty,
and it needs to be composed entirely of letters. Wouldn’t it be faster to write a loop checking
each character, and do away with regular expressions altogether?

Here is soundex/stage1/soundex1d.py:

if not source:
return "0000"

for c in source:
if not (’A’ <= c <= ’Z’) and not (’a’ <= c <= ’z’):

return "0000"

341

It turns out that this technique in soundex1d.py is not faster than using a compiled regular
expression (although it is faster than using a non-compiled regular expression):

C:\samples\soundex\stage1>python soundex1d.py
Woo W000 15.4065058548
Pilgrim P426 22.2753567842
Flingjingwaller F452 37.5845122774

Why isn’t soundex1d.py faster? The answer lies in the interpreted nature of Python. The
regular expression engine is written in C, and compiled to run natively on your computer. On
the other hand, this loop is written in Python, and runs through the Python interpreter. Even
though the loop is relatively simple, it’s not simple enough to make up for the overhead of
being interpreted. Regular expressions are never the right answer... except when they are.

It turns out that Python offers an obscure string method. You can be excused for not knowing
about it, since it’s never been mentioned in this book. The method is called isalpha(), and it
checks whether a string contains only letters.

This is soundex/stage1/soundex1e.py:

if (not source) and (not source.isalpha()):
return "0000"

How much did we gain by using this specific method in soundex1e.py? Quite a bit.

C:\samples\soundex\stage1>python soundex1e.py
Woo W000 13.5069504644
Pilgrim P426 18.2199394057
Flingjingwaller F452 28.9975225902

Example 18.3. Best Result So Far: soundex/stage1/soundex1e.py

import string, re

charToSoundex = {"A": "9",
"B": "1",
"C": "2",
"D": "3",
"E": "9",
"F": "1",
"G": "2",
"H": "9",
"I": "9",
"J": "2",
"K": "2",
"L": "4",
"M": "5",
"N": "5",

342

"O": "9",
"P": "1",
"Q": "2",
"R": "6",
"S": "2",
"T": "3",
"U": "9",
"V": "1",
"W": "9",
"X": "2",
"Y": "9",
"Z": "2"}

def soundex(source):
if (not source) and (not source.isalpha()):

return "0000"
source = source[0].upper() + source[1:]
digits = source[0]
for s in source[1:]:

s = s.upper()
digits += charToSoundex[s]

digits2 = digits[0]
for d in digits[1:]:

if digits2[-1] != d:
digits2 += d

digits3 = re.sub(’9’, ’’, digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

if __name__ == ’__main__’:
from timeit import Timer
names = (’Woo’, ’Pilgrim’, ’Flingjingwaller’)
for name in names:

statement = "soundex(’%s’)" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

18.4 Optimizing Dictionary Lookups

The second step of the Soundex algorithm is to convert characters to digits in a
specific pattern. What’s the best way to do this?

The most obvious solution is to define a dictionary with individual characters as keys and their
corresponding digits as values, and do dictionary lookups on each character. This is what we
have in soundex/stage1/soundex1c.py (the current best result so far):

343

charToSoundex = {"A": "9",
"B": "1",
"C": "2",
"D": "3",
"E": "9",
"F": "1",
"G": "2",
"H": "9",
"I": "9",
"J": "2",
"K": "2",
"L": "4",
"M": "5",
"N": "5",
"O": "9",
"P": "1",
"Q": "2",
"R": "6",
"S": "2",
"T": "3",
"U": "9",
"V": "1",
"W": "9",
"X": "2",
"Y": "9",
"Z": "2"}

def soundex(source):
... input check omitted for brevity ...
source = source[0].upper() + source[1:]
digits = source[0]
for s in source[1:]:

s = s.upper()
digits += charToSoundex[s]

You timed soundex1c.py already; this is how it performs:

C:\samples\soundex\stage1>python soundex1c.py
Woo W000 14.5341678901
Pilgrim P426 19.2650071448
Flingjingwaller F452 30.1003563302

This code is straightforward, but is it the best solution? Calling upper() on each individual
character seems inefficient; it would probably be better to call upper() once on the entire
string.

Then there’s the matter of incrementally building the digits string. Incrementally building
strings like this is horribly inefficient; internally, the Python interpreter needs to create a new
string each time through the loop, then discard the old one.

344

Python is good at lists, though. It can treat a string as a list of characters automatically. And
lists are easy to combine into strings again, using the string method join().

Here is soundex/stage2/soundex2a.py, which converts letters to digits by using 7→ and
lambda:

def soundex(source):
...
source = source.upper()
digits = source[0] + "".join(map(lambda c: charToSoundex[c], source[1:]))

Surprisingly, soundex2a.py is not faster:

C:\samples\soundex\stage2>python soundex2a.py
Woo W000 15.0097526362
Pilgrim P426 19.254806407
Flingjingwaller F452 29.3790847719

The overhead of the anonymous lambda function kills any performance you gain by dealing
with the string as a list of characters.

soundex/stage2/soundex2b.py uses a list comprehension instead of 7→ and lambda:

source = source.upper()
digits = source[0] + "".join([charToSoundex[c] for c in source[1:]])

Using a list comprehension in soundex2b.py is faster than using 7→ and lambda in soundex2a.py,
but still not faster than the original code (incrementally building a string in soundex1c.py):

C:\samples\soundex\stage2>python soundex2b.py
Woo W000 13.4221324219
Pilgrim P426 16.4901234654
Flingjingwaller F452 25.8186157738

It’s time for a radically different approach. Dictionary lookups are a general purpose tool.
Dictionary keys can be any length string (or many other data types), but in this case we are
only dealing with single-character keys and single-character values. It turns out that Python
has a specialized function for handling exactly this situation: the string.maketrans function.

This is soundex/stage2/soundex2c.py:

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
def soundex(source):

...
digits = source[0].upper() + source[1:].translate(charToSoundex)

What the heck is going on here? string.maketrans creates a translation matrix between
two strings: the first argument and the second argument. In this case, the first argument is

345

the string ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, and the second
argument is the string 9123912992245591262391929291239129922455912623919292. See
the pattern? It’s the same conversion pattern we were setting up longhand with a dictionary.
A maps to 9, B maps to 1, C maps to 2, and so forth. But it’s not a dictionary; it’s a specialized
data structure that you can access using the string method translate, which translates each
character into the corresponding digit, according to the matrix defined by string.maketrans.

timeit shows that soundex2c.py is significantly faster than defining a dictionary and loop-
ing through the input and building the output incrementally:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 11.437645008
Pilgrim P426 13.2825062962
Flingjingwaller F452 18.5570110168

You’re not going to get much better than that. Python has a specialized function that does
exactly what you want to do; use it and move on.

Example 18.4. Best Result So Far: soundex/stage2/soundex2c.py

import string, re

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile(’^[A-Za-z]+$’).search

def soundex(source):
if not isOnlyChars(source):

return "0000"
digits = source[0].upper() + source[1:].translate(charToSoundex)
digits2 = digits[0]
for d in digits[1:]:

if digits2[-1] != d:
digits2 += d

digits3 = re.sub(’9’, ’’, digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

if __name__ == ’__main__’:
from timeit import Timer
names = (’Woo’, ’Pilgrim’, ’Flingjingwaller’)
for name in names:

statement = "soundex(’%s’)" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

346

18.5 Optimizing List Operations
The third step in the Soundex algorithm is eliminating consecutive duplicate dig-
its. What’s the best way to do this?

Here’s the code we have so far, in soundex/stage2/soundex2c.py:

digits2 = digits[0]
for d in digits[1:]:

if digits2[-1] != d:
digits2 += d

Here are the performance results for soundex2c.py:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 12.6070768771
Pilgrim P426 14.4033353401
Flingjingwaller F452 19.7774882003

The first thing to consider is whether it’s efficient to check digits[-1] each time through the
loop. Are list indexes expensive? Would we be better off maintaining the last digit in a separate
variable, and checking that instead?

To answer this question, here is soundex/stage3/soundex3a.py:

digits2 = ’’
last_digit = ’’
for d in digits:

if d != last_digit:
digits2 += d
last_digit = d

soundex3a.py does not run any faster than soundex2c.py, and may even be slightly slower
(although it’s not enough of a difference to say for sure):

C:\samples\soundex\stage3>python soundex3a.py
Woo W000 11.5346048171
Pilgrim P426 13.3950636184
Flingjingwaller F452 18.6108927252

Why isn’t soundex3a.py faster? It turns out that list indexes in Python are extremely efficient.
Repeatedly accessing digits2[-1] is no problem at all. On the other hand, manually main-
taining the last seen digit in a separate variable means we have two variable assignments for
each digit we’re storing, which wipes out any small gains we might have gotten from elimi-
nating the list lookup.

Let’s try something radically different. If it’s possible to treat a string as a list of characters,
it should be possible to use a list comprehension to iterate through the list. The problem is,

347

the code needs access to the previous character in the list, and that’s not easy to do with a
straightforward list comprehension.

However, it is possible to create a list of index numbers using the built-in range() function,
and use those index numbers to progressively search through the list and pull out each char-
acter that is different from the previous character. That will give you a list of characters, and
you can use the string method join() to reconstruct a string from that.

Here is soundex/stage3/soundex3b.py:

digits2 = "".join([digits[i] for i in range(len(digits))
if i == 0 or digits[i-1] != digits[i]])

Is this faster? In a word, no.

C:\samples\soundex\stage3>python soundex3b.py
Woo W000 14.2245271396
Pilgrim P426 17.8337165757
Flingjingwaller F452 25.9954005327

It’s possible that the techniques so far as have been “string-centric”. Python can convert a
string into a list of characters with a single command: list(’abc’) returns [’a’, ’b’,
’c’]. Furthermore, lists can be modified in place very quickly. Instead of incrementally build-
ing a new list (or string) out of the source string, why not move elements around within a
single list?

Here is soundex/stage3/soundex3c.py, which modifies a list in place to remove consecu-
tive duplicate elements:

digits = list(source[0].upper() + source[1:].translate(charToSoundex))
i=0
for item in digits:

if item==digits[i]: continue
i+=1
digits[i]=item

del digits[i+1:]
digits2 = "".join(digits)

Is this faster than soundex3a.py or soundex3b.py? No, in fact it’s the slowest method yet:

C:\samples\soundex\stage3>python soundex3c.py
Woo W000 14.1662554878
Pilgrim P426 16.0397885765
Flingjingwaller F452 22.1789341942

348

We haven’t made any progress here at all, except to try and rule out several “clever” tech-
niques. The fastest code we’ve seen so far was the original, most straightforward method
(soundex2c.py). Sometimes it doesn’t pay to be clever.

Example 18.5. Best Result So Far: soundex/stage2/soundex2c.py

import string, re

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile(’^[A-Za-z]+$’).search

def soundex(source):
if not isOnlyChars(source):

return "0000"
digits = source[0].upper() + source[1:].translate(charToSoundex)
digits2 = digits[0]
for d in digits[1:]:

if digits2[-1] != d:
digits2 += d

digits3 = re.sub(’9’, ’’, digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

if __name__ == ’__main__’:
from timeit import Timer
names = (’Woo’, ’Pilgrim’, ’Flingjingwaller’)
for name in names:

statement = "soundex(’%s’)" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

18.6 Optimizing String Manipulation

The final step of the Soundex algorithm is padding short results with zeros, and
truncating long results. What is the best way to do this?

This is what we have so far, taken from soundex/stage2/soundex2c.py:

digits3 = re.sub(’9’, ’’, digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

These are the results for soundex2c.py:

349

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 12.6070768771
Pilgrim P426 14.4033353401
Flingjingwaller F452 19.7774882003

The first thing to consider is replacing that regular expression with a loop. This code is from
soundex/stage4/soundex4a.py:

digits3 = ’’
for d in digits2:

if d != ’9’:
digits3 += d

Is soundex4a.py faster? Yes it is:

C:\samples\soundex\stage4>python soundex4a.py
Woo W000 6.62865531792
Pilgrim P426 9.02247576158
Flingjingwaller F452 13.6328416042

But wait a minute. A loop to remove characters from a string? We can use a simple string
method for that. Here’s soundex/stage4/soundex4b.py:

digits3 = digits2.replace(’9’, ’’)

Is soundex4b.py faster? That’s an interesting question. It depends on the input:

C:\samples\soundex\stage4>python soundex4b.py
Woo W000 6.75477414029
Pilgrim P426 7.56652144337
Flingjingwaller F452 10.8727729362

The string method in soundex4b.py is faster than the loop for most names, but it’s actually
slightly slower than soundex4a.py in the trivial case (of a very short name). Performance
optimizations aren’t always uniform; tuning that makes one case faster can sometimes make
other cases slower. In this case, the majority of cases will benefit from the change, so let’s leave
it at that, but the principle is an important one to remember.

Last but not least, let’s examine the final two steps of the algorithm: padding short results with
zeros, and truncating long results to four characters. The code you see in soundex4b.py does
just that, but it’s horribly inefficient. Take a look at soundex/stage4/soundex4c.py to see
why:

digits3 += ’000’
return digits3[:4]

350

Why do we need a while loop to pad out the result? We know in advance that we’re going to
truncate the result to four characters, and we know that we already have at least one character
(the initial letter, which is passed unchanged from the original source variable). That means
we can simply add three zeros to the output, then truncate it. Don’t get stuck in a rut over the
exact wording of the problem; looking at the problem slightly differently can lead to a simpler
solution.

How much speed do we gain in soundex4c.py by dropping the while loop? It’s significant:

C:\samples\soundex\stage4>python soundex4c.py
Woo W000 4.89129791636
Pilgrim P426 7.30642134685
Flingjingwaller F452 10.689832367

Finally, there is still one more thing you can do to these three lines of code to make them faster:
you can combine them into one line. Take a look at soundex/stage4/soundex4d.py:

return (digits2.replace(’9’, ’’) + ’000’)[:4]

Putting all this code on one line in soundex4d.py is barely faster than soundex4c.py:

C:\samples\soundex\stage4>python soundex4d.py
Woo W000 4.93624105857
Pilgrim P426 7.19747593619
Flingjingwaller F452 10.5490700634

It is also significantly less readable, and for not much performance gain. Is that worth it? I
hope you have good comments. Performance isn’t everything. Your optimization efforts must
always be balanced against threats to your program’s readability and maintainability.

18.7 Summary
This chapter has illustrated several important aspects of performance tuning in
Python, and performance tuning in general.

• If you need to choose between regular expressions and writing a loop, choose regular ex-
pressions. The regular expression engine is compiled in C and runs natively on your com-
puter; your loop is written in Python and runs through the Python interpreter.

• If you need to choose between regular expressions and string methods, choose string meth-
ods. Both are compiled in C, so choose the simpler one.

• General-purpose dictionary lookups are fast, but specialtiy functions such as string.maketrans
and string methods such as isalpha() are faster. If Python has a custom-tailored function
for you, use it.

351

• Don’t be too clever. Sometimes the most obvious algorithm is also the fastest.

• Don’t sweat it too much. Performance isn’t everything.

I can’t emphasize that last point strongly enough. Over the course of this chapter, you made
this function three times faster and saved 20 seconds over 1 million function calls. Great. Now
think: over the course of those million function calls, how many seconds will your surrounding
application wait for a database connection? Or wait for disk I/O? Or wait for user input? Don’t
spend too much time over-optimizing one algorithm, or you’ll ignore obvious improvements
somewhere else. Develop an instinct for the sort of code that Python runs well, correct obvious
blunders if you find them, and leave the rest alone.

352

A Further reading

353

B A 5-minute review

354

C Tips and tricks

355

D List of examples

356

E Revision history

357

F About the book

This book was written in DocBook XML using Emacs, and converted to HTML using the
SAXON XSLT processor from Michael Kay with a customized version of Norman Walsh’s
XSL stylesheets. From there, it was converted to PDF using HTMLDoc, and to plain text
using w3m. Program listings and examples were colorized using an updated version of Just
van Rossum’s pyfontify.py, which is included in the example scripts.

If you’re interested in learning more about DocBook for technical writing, you can download
the XML source and the build scripts, which include the customized XSL stylesheets used to
create all the different formats of the book. You should also read the canonical book, DocBook:
The Definitive Guide. If you’re going to do any serious writing in DocBook, I would recom-
mend subscribing to the DocBook mailing lists.

http://www.oasis-open.org/docbook/
http://www.oasis-open.org/docbook/
http://www.gnu.org/software/emacs/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.nwalsh.com/xsl/
http://www.nwalsh.com/xsl/
http://www.nwalsh.com/xsl/
http://www.nwalsh.com/xsl/
http://www.easysw.com/htmldoc/
http://ei5nazha.yz.yamagata-u.ac.jp/~aito/w3m/eng/
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-common-5.4.zip
http://diveintopython.org/download/diveintopython-common-5.4.zip
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/
http://lists.oasis-open.org/archives/
http://lists.oasis-open.org/archives/
http://lists.oasis-open.org/archives/

358

G GNU Free Documentation License

Version 1.1, March 2000

“Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.”

G.1 Preamble

The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

G.2 Applicability and definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed
as "you".

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter of

359

historical connection with the subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and
edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats in-
clude PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

G.3 Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

360

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

G.4 Copying in quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before re-
distributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

G.5 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

361

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the His-
tory section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

362

M. Delete any section entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

G.6 Combining documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various origi-
nal documents, forming one section entitled "History"; likewise combine any sections entitled

363

"Acknowledgements", and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

G.7 Collections of documents

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

G.8 Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an "aggregate", and this License does not
apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

G.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

364

G.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

G.11 Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

G.12 How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

“Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the In-
variant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST. A copy of the license is included in the section
entitled "GNU Free Documentation License".”

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which
ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

http://www.gnu.org/copyleft/

365

H Python license

H.1 History of the software
Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Cen-
trum (CWI) in the Netherlands as a successor of a language called ABC. Guido is Python’s prin-
cipal author, although it includes many contributions from others. The last version released
from CWI was Python 1.2. In 1995, Guido continued his work on Python at the Corporation
for National Research Initiatives (CNRI) in Reston, Virginia where he released several versions
of the software. Python 1.6 was the last of the versions released by CNRI. In 2000, Guido and
the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. Python 2.0 was the first and only release from BeOpen.com.

Following the release of Python 1.6, and after Guido van Rossum left CNRI to work with
commercial software developers, it became clear that the ability to use Python with software
available under the GNU Public License (GPL) was very desirable. CNRI and the Free Soft-
ware Foundation (FSF) interacted to develop enabling wording changes to the Python license.
Python 1.6.1 is essentially the same as Python 1.6, with a few minor bug fixes, and with a dif-
ferent license that enables later versions to be GPL-compatible. Python 2.1 is a derivative work
of Python 1.6.1, as well as of Python 2.0.

After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other Python-
Labs developers joined Digital Creations. All intellectual property added from this point
on, starting with Python 2.1 and its alpha and beta releases, is owned by the Python Soft-
ware Foundation (PSF), a non-profit modeled after the Apache Software Foundation. See
http://www.python.org/psf/ for more information about the PSF.

Thanks to the many outside volunteers who have worked under Guido’s direction to make
these releases possible.

H.2 Terms and conditions for accessing or otherwise using
Python

H.2.1 PSF license agreement

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and the
Individual or Organization ("Licensee") accessing and otherwise using Python 2.1.1 soft-
ware in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or

366

display publicly, prepare derivative works, distribute, and otherwise use Python 2.1.1 alone
or in any derivative version, provided, however, that PSF’s License Agreement and PSF’s
notice of copyright, i.e., "Copyright (c) 2001 Python Software Foundation; All Rights Re-
served" are retained in Python 2.1.1 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python
2.1.1 or any part thereof, and wants to make the derivative work available to others as
provided herein, then Licensee hereby agrees to include in any such work a brief summary
of the changes made to Python 2.1.1.

4. PSF is making Python 2.1.1 available to Licensee on an "AS IS" basis. PSF MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PUR-
POSE OR THAT THE USE OF PYTHON 2.1.1 WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.1.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.1.1, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms
and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between PSF and Licensee. This License Agreement does not
grant permission to use PSF trademarks or trade name in a trademark sense to endorse or
promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.1.1, Licensee agrees to be bound by the
terms and conditions of this License Agreement.

H.2.2 BeOpen Python open source license agreement version 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization ("Licensee")
accessing and otherwise using this software in source or binary form and its associated
documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen
hereby grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, an-
alyze, test, perform and/or display publicly, prepare derivative works, distribute, and oth-
erwise use the Software alone or in any derivative version, provided, however, that the

367

BeOpen Python License is retained in the Software, alone or in any derivative version pre-
pared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESEN-
TATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICU-
LAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY
THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFT-
WARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms
and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of
the State of California, excluding conflict of law provisions. Nothing in this License Agree-
ment shall be deemed to create any relationship of agency, partnership, or joint venture
between BeOpen and Licensee. This License Agreement does not grant permission to use
BeOpen trademarks or trade names in a trademark sense to endorse or promote products or
services of Licensee, or any third party. As an exception, the "BeOpen Python" logos avail-
able at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the
terms and conditions of this License Agreement.

H.2.3 CNRI open source GPL-compatible license agreement

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives,
having an office at 1895 Preston White Drive, Reston, VA 20191 ("CNRI"), and the Individ-
ual or Organization ("Licensee") accessing and otherwise using Python 1.6.1 software in
source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Li-
censee a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and otherwise use Python
1.6.1 alone or in any derivative version, provided, however, that CNRI’s License Agreement

368

and CNRI’s notice of copyright, i.e., "Copyright (c) 1995-2001 Corporation for National Re-
search Initiatives; All Rights Reserved" are retained in Python 1.6.1 alone or in any deriv-
ative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Li-
censee may substitute the following text (omitting the quotes): "Python 1.6.1 is made avail-
able subject to the terms and conditions in CNRI’s License Agreement. This Agreement
together with Python 1.6.1 may be located on the Internet using the following unique, per-
sistent identifier (known as a handle): 1895.22/1013. This Agreement may also be obtained
from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on or incorporates Python
1.6.1 or any part thereof, and wants to make the derivative work available to others as
provided herein, then Licensee hereby agrees to include in any such work a brief summary
of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PUR-
POSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms
and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the
United States, including without limitation the federal copyright law, and, to the extent
such U.S. federal law does not apply, by the law of the Commonwealth of Virginia, exclud-
ing Virginia’s conflict of law provisions. Notwithstanding the foregoing, with regard to
derivative works based on Python 1.6.1 that incorporate non-separable material that was
previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under
or with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License
Agreement shall be deemed to create any relationship of agency, partnership, or joint ven-
ture between CNRI and Licensee. This License Agreement does not grant permission to

369

use CNRI trademarks or trade name in a trademark sense to endorse or promote products
or services of Licensee, or any third party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing or otherwise
using Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License
Agreement.

H.2.4 CWI permissions statement and disclaimer

“Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Nether-
lands. All rights reserved.”

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in
all copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of Stichting Mathematisch Centrum or CWI not be used
in advertising or publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LI-
ABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

	Installing Python
	Which Python is right for you?
	Python on Windows
	Python on Mac OS X
	Python on Mac OS 9
	Python on RedHat Linux
	Python on Debian GNU/Linux
	Python Installation from Source
	The Interactive Shell
	Summary

	Your First Python Program
	Diving in
	Declaring Functions
	How Python's Datatypes Compare to Other Programming Languages

	Documenting Functions
	Everything Is an Object
	The Import Search Path
	What's an Object?

	Indenting Code
	Testing Modules

	Native Datatypes
	Introducing Dictionaries
	Defining Dictionaries
	Modifying Dictionaries
	Deleting Items From Dictionaries

	Introducing Lists
	Defining Lists
	Adding Elements to Lists
	Searching Lists
	Deleting List Elements
	Using List Operators

	Introducing Tuples
	Declaring variables
	Referencing Variables
	Assigning Multiple Values at Once

	Formatting Strings
	Mapping Lists
	Joining Lists and Splitting Strings
	Historical Note on String Methods

	Summary

	The Power Of Introspection
	Diving In
	Using Optional and Named Arguments
	Using {type}, {str}, {dir}, and Other Built-{}In Functions
	The {type} Function
	The {str} Function
	Built-{}In Functions

	Getting Object References With {getattr}
	{getattr} with Modules
	{getattr} As a Dispatcher

	Filtering Lists
	The Peculiar Nature of {and} and {or}
	Using the {and-{}or} Trick

	Using {lambda} Functions
	Real-{}World {lambda} Functions

	Putting It All Together
	Summary

	Objects and Object-{}Orientation
	Diving In
	Importing Modules Using {from {{em module}} import}
	Defining Classes
	Initializing and Coding Classes
	Knowing When to Use {self} and {__init__}

	Instantiating Classes
	Garbage Collection

	Exploring {UserDict}: A Wrapper Class
	Special Class Methods
	Getting and Setting Items

	Advanced Special Class Methods
	Introducing Class Attributes
	Private Functions
	Summary

	Exceptions and File Handling
	Handling Exceptions
	Using Exceptions For Other Purposes

	Working with File Objects
	Reading Files
	Closing Files
	Handling I/O Errors
	Writing to Files

	Iterating with {for} Loops
	Using {{sys}.modules}
	Working with Directories
	Putting It All Together
	Summary

	Regular Expressions
	Diving In
	Case Study: Street Addresses
	Case Study: Roman Numerals
	Checking for Thousands
	Checking for Hundreds

	Using the {lbrace n,m
brace } Syntax
	Checking for Tens and Ones

	Verbose Regular Expressions
	Case study: Parsing Phone Numbers
	Summary

	HTML Processing
	Diving in
	Introducing {sgmllib.py}
	Extracting data from HTML documents
	Introducing {BaseHTMLProcessor.py}
	{locals} and {globals}
	Dictionary-{}based string formatting
	Quoting attribute values
	Introducing {dialect.py}
	Putting it all together
	Summary

	XML Processing
	Diving in
	Packages
	Parsing XML
	Unicode
	Searching for elements
	Accessing element attributes
	Segue

	Scripts and Streams
	Abstracting input sources
	Standard input, output, and error
	Caching node lookups
	Finding direct children of a node
	Creating separate handlers by node type
	Handling command-{}line arguments
	Putting it all together
	Summary

	HTTP Web Services
	Diving in
	How not to fetch data over HTTP
	Features of HTTP
	User-{}Agent
	Redirects
	{Last-{}Modified}/{If-{}Modified-{}Since}
	{ETag}/{If-{}None-{}Match}
	Compression

	Debugging HTTP web services
	Setting the {User-{}Agent}
	Handling {Last-{}Modified} and {ETag}
	Handling redirects
	Handling compressed data
	Putting it all together
	Summary

	SOAP Web Services
	Diving In
	Installing the SOAP Libraries
	Installing PyXML
	Installing fpconst
	Installing SOAPpy

	First Steps with SOAP
	Debugging SOAP Web Services
	Introducing WSDL
	Introspecting SOAP Web Services with WSDL
	Searching Google
	Troubleshooting SOAP Web Services
	Summary

	Unit Testing
	Introduction to Roman numerals
	Diving in
	Introducing {romantest.py}
	Testing for success
	Testing for failure
	Testing for sanity

	Test-{}First Programming
	{roman.py}, stage 1
	{roman.py}, stage 2
	{roman.py}, stage 3
	{roman.py}, stage 4
	{roman.py}, stage 5

	Refactoring
	Handling bugs
	Handling changing requirements
	Refactoring
	Postscript
	Summary

	Functional Programming
	Diving in
	Finding the path
	Filtering lists revisited
	Mapping lists revisited
	Data-{}centric programming
	Dynamically importing modules
	Putting it all together
	Summary

	Dynamic functions
	Diving in
	{plural.py}, stage 1
	{plural.py}, stage 2
	{plural.py}, stage 3
	{plural.py}, stage 4
	{plural.py}, stage 5
	{plural.py}, stage 6
	Summary

	Performance Tuning
	Diving in
	Using the {timeit} Module
	Optimizing Regular Expressions
	Optimizing Dictionary Lookups
	Optimizing List Operations
	Optimizing String Manipulation
	Summary

	Further reading
	A 5-{}minute review
	Tips and tricks
	List of examples
	Revision history
	About the book
	GNU Free Documentation License
	Preamble
	Applicability and definitions
	Verbatim copying
	Copying in quantity
	Modifications
	Combining documents
	Collections of documents
	Aggregation with independent works
	Translation
	Termination
	Future revisions of this license
	How to use this License for your documents

	Python license
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF license agreement
	BeOpen Python open source license agreement version 1
	CNRI open source GPL-{}compatible license agreement
	CWI permissions statement and disclaimer

